平成28年度 若手研究発表会

2016/04/11

粒子フィルタを利用した 土壌水分特性パラメータの逆解析

大阪大学 博士後期課程2年 伊藤 真一

日本における土砂災害

土砂災害

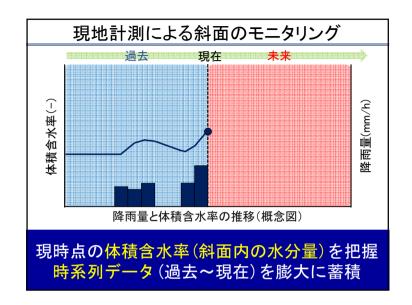
- ◆広島豪雨災害(平成26年)
- ◆伊豆大島土砂災害(平成25年)
- ◆九州北部豪雨(平成24年)
- ◆紀伊半島豪雨災害(平成23年)

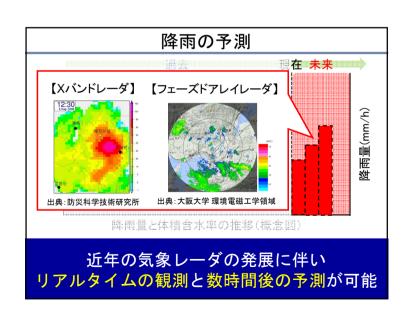
紀伊半島豪雨災害

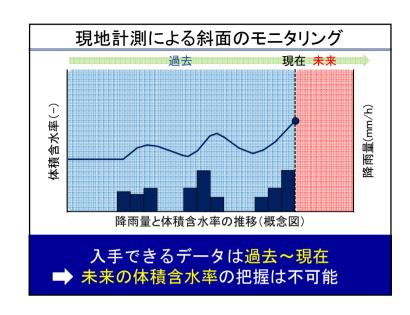
撮影日:2012.11.17

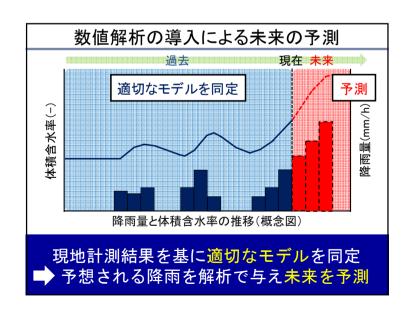
多大な損失(人的被害、インフラ設備の損傷)

危険斜面に対する適切な防災対策が必要

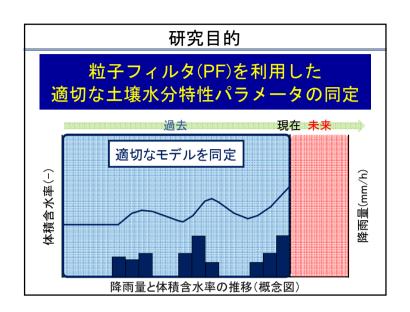

発表内容


- ◆はじめに(背景・目的)
- ◆解析手法 (飽和不飽和浸透流解析・粒子フィルタ)
- ◆土壌水分特性パラメータの同定と 未経験降雨に対する予測性能の検証
- ◆パラメータの更新が浸透解析に与える影響
- ◆まとめ


現地計測の普及 センサの小型化・低コスト化+通信技術の発展 雨量計 センサノード 土壌水分計 深度 30cm 深度 60cm 最影日:平成27年10月26日 現地計測の状況 センサの設置方法


斜面内の体積含水率(水分量)を計測

➡ 斜面災害発生の危険度を評価



発表内容

- ◆はじめに(背景・目的)
- ◆解析手法 (飽和不飽和浸透流解析・粒子フィルタ)
- ◆土壌水分特性パラメータの同定と 未経験降雨に対する予測性能の検証
- ◆パラメータの更新が浸透解析に与える影響
- ◆まとめ

同定する未知パラメータ

- Richards式 -

土中水の連続式(Z方向)

$$-\frac{\partial}{\partial z} \left(k \left(\frac{\partial h_p}{\partial z} + 1 \right) \right) = C \frac{\partial h_p}{\partial t}$$

ー van Genuchtenモデル

水分特性曲線に関するモデル

$$S_e = (\theta - \theta_r / \theta_s - \theta_r)$$
$$= \{1 + (-\alpha \cdot h_n)^n\}^{-m}$$

$$k = k_s \times S_e^{l} \{1 - (1 - S_e^{1/m})^m\}^2$$

k(cm/min):不飽和透水係数

 $h_p(cm)$: 土壌水分吸引水頭

C(½,,,):比水分容量

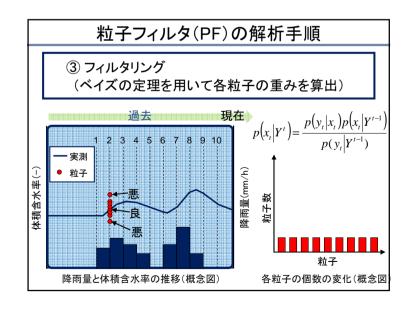
 $S_e(-)$:有効飽和度

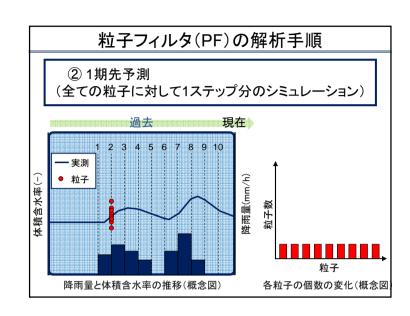
θ(-):体積含水率

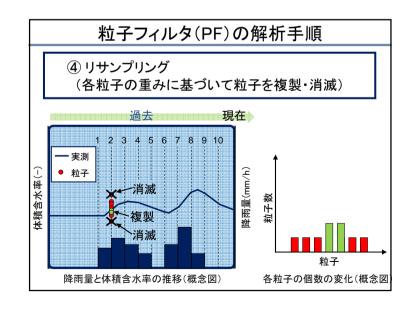
 $\theta_s(-)$:飽和体積含水率

 $\theta_r(-)$:残留体積含水率

 $\alpha \binom{1}{cm}$:空気侵入値に 関わるパラメータ

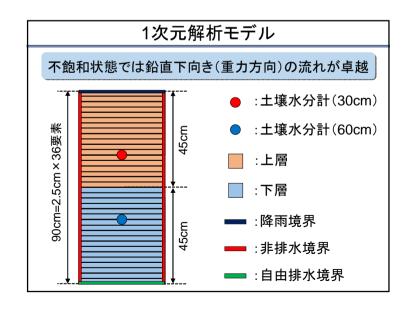

n(-):無次元パラメータ

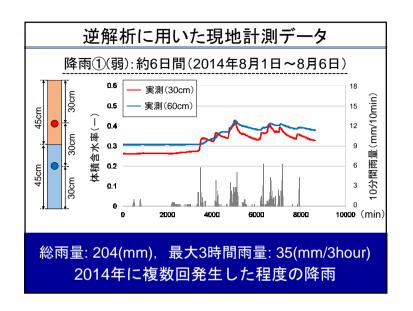

 $m(-):1-\frac{1}{n}$

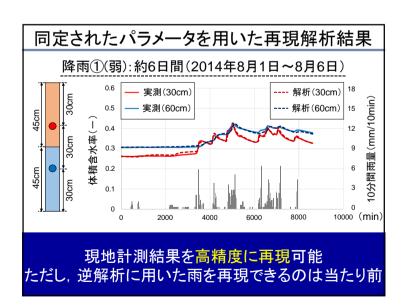

k (cm/min):飽和透水係数

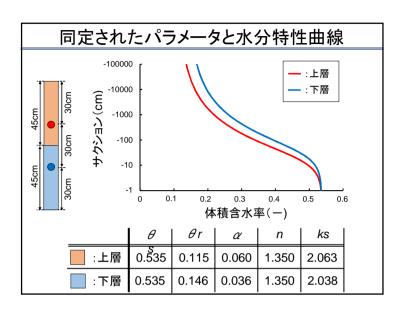
l(-):無次元パラメータ

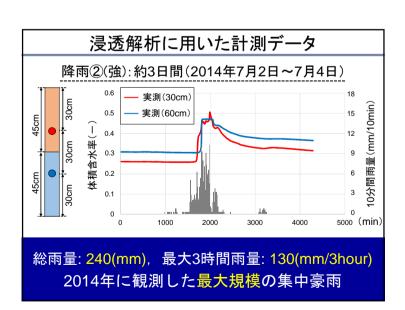
粒子フィルタ(PF)の解析手順 (1) 無数の粒子(パラメータ+各時刻の物理量)を作成 r【粒子1】-, r【粒子2】-, r【粒子3】-, 【粒子5000】 5000 θ s=0.591 I $\theta s = 0.573$ I $\theta s = 0.463$ $\theta s = 0.461$ $\theta r = 0.078$ $\theta r = 0.105$ $\theta r = 0.137$ $\theta r = 0.024$ *α*=0.123 *α*=0.115 *α*=0.083 $\alpha = 0.151$ *n*=1.757 *n*=1.451 *n*=1.982 *n*=1.473 $k_s = 0.371$ ks=8.466 ks=2.656ks=3.621 θ t=0,... $\theta_{t=0,\cdots}$ $\theta_{t=0,\cdots}$ $\theta_{t=0,\cdots}$

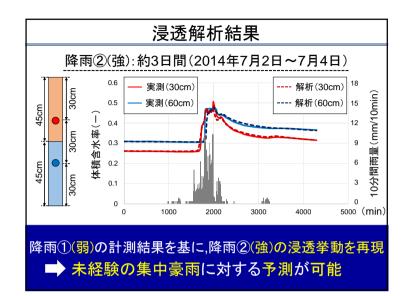


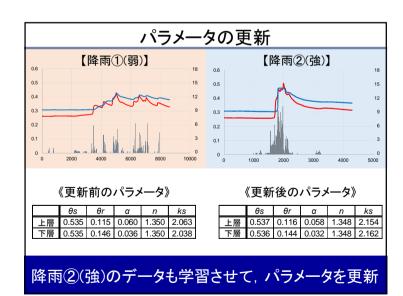

粒子フィルタ(PF)の解析手順 ⑤全ステップに対して②~④を繰り返す 数値解析シミュレーションとベイズ更新を 逐次繰り返すことで適切なパラメータを同定 「実測・粒子」 ・ 粒子 降雨量と体積含水率の推移(概念図) を繰り返す を対子の個数の変化(概念図)

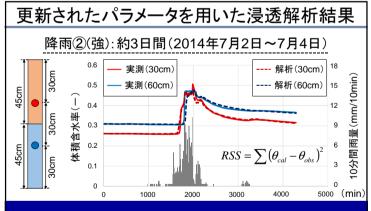



発表内容

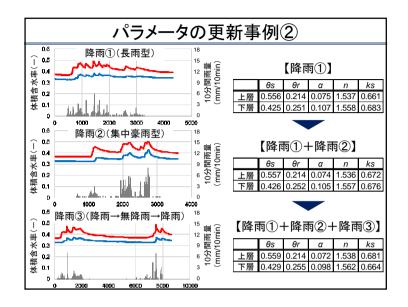

- ◆はじめに(背景・目的)
- ◆解析手法 (飽和不飽和浸透流解析・粒子フィルタ)
- ◆土壌水分特性パラメータの同定と 未経験降雨に対する予測性能の検証
- ◆パラメータの更新が浸透解析に与える影響
- ◆まとめ







発表内容


- ◆はじめに(背景・目的)
- ◆解析手法 (飽和不飽和浸透流解析・粒子フィルタ)
- ◆土壌水分特性パラメータの同定と 未経験降雨に対する予測性能の検証
- ◆パラメータの更新が浸透解析に与える影響
- ◆まとめ

残差平方和=上層: 0.0234 (更新前: 0.0252)

下層: 0.0746(更新前: 0.0797)

→ パラメータ更新により、より現地の状態に近い解析が可能

発表内容

- ◆はじめに(背景・目的)
- ◆解析手法 (飽和不飽和浸透流解析・粒子フィルタ)
- ◆土壌水分特性パラメータの同定と 未経験降雨に対する予測性能の検証
- ◆パラメータの更新が浸透解析に与える影響
- ◆まとめ

パラメータの更新事例②

同定・更新されたパラメータを用いて,残差平方和を算出

		残差平方和(解析と計測の誤差)					
		降雨①(長雨)		降雨②(集中)		降雨③(交互)	
		20cm	40cm	20cm	40cm	20cm	40cm
逆解析	降雨①のみ (更新前)	0.0159	0.0092	0.0105	0.0125	0.0401	0.0574
	降雨①と 降雨②	0.0157	0.0075	0.0104	0.0096	0.0401	0.0453
	降雨①~ 降雨③	0.0146	0.0064	0.0101	0.0061	0.0372	0.0294

パラメータ更新のたびに,算出される残差平方和は減少

様々な降雨を学習することで、より良いモデルへと修正

まとめ

粒子フィルタ (PF) を利用した 適切な土壌水分特性パラメータの同定

粒子フィルタにより同定されたパラメータは、 パラメータ同定に用いた現地計測結果だけでなく 未経験降雨時の計測結果も高精度に再現可能

降雨形態の異なる様々な種類の降雨イベントを 雨水浸透解析モデルに学習させることで, より現地の状態に近いパラメータへと更新可能

ご清聴ありがとうございました