(社)日本地すべり学会関西支部/日本応用地質学会関西支部 現 地 討 論 会

紀伊山地における四万十地すべり 論 文 集

主 催 (社)日本地すべり学会関西支部/日本応用地質学会関西支部 後 援 国土交通省近畿地方整備局・奈良県 (社)砂防学会・(社)地盤工学会関西支部

(社)日本地すべり学会関西支部/日本応用地質学会関西支部 現 地 討 論 会

紀伊山地における四万十地すべり

	見 1 宿	学 地 注	b :	奈 十	良! 津。	県国川温	国追	11111111111111111111111111111111111111	6 } (8 f	号字 包原	- ≥ 井 ᆗ 吉	非地 『野	区均	也す - 津	≛川‡	IJ、					号折	立	地区	ヹ地	すべ	נו
									プ	[]	1	ブ	ラ		٨	•	目		次							
第	1日 11		00	į	丘銵	七橿	原	神	宮貞	前集	合	•	出多	Ě(星	會	tはí	各自	こ	用加	う意	だる	さい)		い。 り踏	 資	
	18	:	30	~	技	術	交	流	会	(+	津)II ;	温泉	艮昴)												
第	2 日																										
										供力																	
	(1) !	持万	別講	 万	Г	紀	伊L	山地	を	中。	心 ረ												題」 『雅』	· ·	1
	(2	,					_						· 奈	· 良!	• 県五	· ·	• 土木	· ·	· ·	• 听	· · ·	・	· .	•]確 (i	·
	(3)	話是	. 題 提	. 供	Г	折	<u>立</u> ‡	也区	地	व -	べり	奈	良!	県五	條	土木	事	務)	斩	上柞	寸良	則			
	(4) i	話是	夏 提	供	Γ	折	<u>立</u> ‡	也区	地	ਰ -	ベリ	奈	良!	県五	條	土木	事	務」	斩	上柞	寸良	則			59 山貴久
	12	:	00	~ 1	3:	00	:	昼	食																		
	13	:	00	~ 1	5:	00					-			ッシ す		ン											
								パ	ネき	ラ ー		!	特別	削講	演 :	者と	話	題振	【供	者							

主 催 (社)日本地すべり学会関西支部/日本応用地質学会関西支部 後 援 国土交通省近畿地方整備局・奈良県 (社)砂防学会・(社)地盤工学会関西支部

(社)日本地すべり学会関西支部長 藤村 尚(鳥取大学)

現地討論会実行委員

委員長 千木良雅弘(京都大学) 委 員 末峯 章(京都大学)

中芝佳照(奈良県)

谷口房一(奈良県)

永田佳充(日本工営)

福岡 浩(学会事務局/京都大学)

紀伊山地を中心とした四万十帯の斜面形成と安定問題

千木良雅弘 (京都大学防災研究所)

1. はじめに

四万十帯は関東地方から九州まで続く典型的な付加体である。そのため、整然と堆積した地層とは異なる性質をもっており、それが斜面の安定にも大きくかかわっている。また、これらは白亜系と古第三系であるが、付加の後に隆起し、削剥を受け、現在の山地を形成している。したがって、四万十帯における山地の斜面形成問題は、地層の形成とその後の斜面形成の履歴に大きくかかわっている。ここでは、このような観点から斜面の安定問題を考えてみる。

要点は次のとおりである. 1)四万十帯の地層には付加体に特有の断層が密に発達しており、これらが斜面の変形や地すべりに大きく影響している. 2)四万十帯には至る所に地質的時代の小起伏面が残存し、それらが解体されつつある. 3)小起伏面の縁は遷急線をなしている. 4)小起伏面の縁が流れ盤構造になっている場合には、斜面変形が発生して遷急線は不鮮明になる. 5)斜面変形は最終的には地すべりに移行する. 6)明瞭な地すべり地形を呈していない斜面変形領域が湛水池にかかる場合には注意が必要である.

2. 付加体に特有の構造と岩石の性質

付加体では、地層の累重関係がさまざまに破壊され、 堆積盆に堆積した地層とはかなり異なった性質をもっ ている.以下に、木村(2000)をもとにまとめてみよう.

1) 覆瓦状構造と順序外スラストなどのせん断構造

付加体は、海洋プレートの沈み込みに伴って海洋底に堆積した堆積物や海山の一部が陸側へ押し付けられて形成されたプリズム状の断面形態をもつ複合体であり、内部には陸側に傾斜するスラストが発達している(図1).海洋プレート上の堆積物は、付加体前縁で、陸側に傾斜する覆瓦スラストによって海洋プレートからはぎ取られ、陸側に付加される.さらに、沈み込み

図1 付加体の内部構造の模式図(木村,1998)

とともに海側に次々に覆瓦スラストが形成されて覆瓦 状構造が形成される.これらの覆瓦スラストはもとも との層理面と平行に近いが、付加体の内側では、これ らの覆瓦状構造を切って、さらに順序外スラストと呼 ばれるスラストが新たに形成される.このような過程 が繰り返されて付加体の構造ができあがっている.付 加体の先端部から陸側に向けて、覆瓦スラスト帯と順 序外スラスト帯のように分布する.

順序外スラストが発達すると、1-3m 間隔で北ない し南にゆるく傾斜した断層群として出現すると考えら れている. 従って、急傾斜地では、順序外スラストが 斜面下部で顔を出す狭義の流れ盤(柾目盤)となり、 斜面の安定性に非常に不利になることもありうる.

覆瓦構造には、前述したようなもの―基底に主スラストがあり、そこから分岐するスラストが扇状に上方に広がるもの―(扇状覆瓦構造)と、デュープレックスとがある(狩野・村田、1998)、デュープレックスは、状面も基底をなす主スラスト(フロアースラスト)と平行する主スラスト(ルーフスラスト)により制約され、覆瓦構造をなす個々の分岐スラストがルーフスラストにも収れんする。前者がはぎとり付加、後者が底づけ付加過程を反映する.

付加体以外の,例えば中央構造線の北側に分布する 白亜系和泉層群では第一位の不連続面は層理面である が,付加体の場合にはそれ以外の不連続面一特にせん 断面一が数多く存在しうることに大きな注意が必要で ある.層理面や覆瓦スラストは比較的延性状態で形成 されてその後癒着しているのに対して,順序外スラス トは岩石が固結した後の破壊であるために,脆性破壊 をともない断層粘土を伴うことが多いと考えられてい る.層理面は受け盤構造を示しているのに,せん断強 度のさな小断層は流れ盤をなしている,というのは一 般的にあるように見受けられる.

図 2 右に急傾斜する層理面とそれを切断する緩傾斜 の断層と、さらにそれを切断する高角度の断層

2) 混在相 (混在岩), メランジュ

泥質岩基質の中に様々な大きさのブロックが含まれる,いわゆる block in matrix 組織を呈する層相を混在相と呼び,通常の地層の層相を整然相と呼ぶことある.そして,混在相の岩石を混在岩とよび,これが地質図に図示できる程度になると,メランジュと呼ぶ.メランジュは付加体やプレート境界をなす地帯に特徴的に発達する地質体である.その成因としては,崩壊によるオリストストローム,ダイアピルメランジュ,テクトニックメランジュの3つが考えられている.最近では,非対称せん断変形などの組織が広域的に認められ,テクトニックメランジュが一般的に存在すると考えられている.

いずれにしても、混在相の特徴は、様々な大きさの岩塊が泥質基質に含まれているもので、地層としての連続性は著しく悪くなっているのが一般的である. さらに、岩石には鱗片状の劈開が発達し、地表に露出して風化すると容易に重力によって変形・破砕しやすい.

図 3 混在岩. 泥質の基質の中に砂岩とチャートの破片が含まれている.

四万十帯の地域差と紀伊山地の四万十帯の概要

四万十帯はいずれの地域でも基本的には付加作用で形成されたものであるが、九州、四国、紀伊山地、赤石山地などの地域差も認められている(狩野・村田、1998). たとえば、九州では中・低角な衝上断層による覆瓦構造やクリッペが随所で認められている. 一方、紀伊山地や赤石山地では露頭規模以上の褶曲構造が発達することが指摘され、また、必ずしも層は南方に向けて若くならず、北部には南部よりも若い地層(花園層)が配置していることも明らかになっている.

木村 (2000) によってまとめられたものを抜粋すると、紀伊山地の四万十帯は次のようにまとめられる. 紀伊半島西部の四万十帯は、御坊一萩構造線によって、白亜系の付加コンプレックス (地上に露出した過去の付加体) からなる北帯 (日高川帯) と主に古第三系の付加コンプレックスからなる南帯(音無川帯と牟ろ帯)に区分される. 北帯はさらに、断層で境され、ENE-WSW 方向に帯状配列をなす5つの累層ー北から花園累層、湯川累層、美山累層、竜神累層、丹生ノ川累層に区分される. これらの構造層序区分を図ー4 に示し、また、地質図を図ー5 に示す.

地質構造的には、花園累層を除いて、他の4累層は、 北傾斜・北上位で、褶曲を伴った覆瓦構造をなしている(図-6). 花園累層は、大きな開いた背斜状褶曲を なし、南傾斜の正断層によって南側の湯川累層と境され、その北縁では北傾斜の有田川構造線で三波川変成 岩と接する.

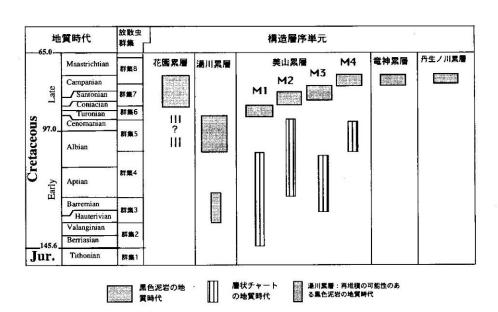


図4 紀伊半島四万十帯北帯白亜紀付加コンプレックスの構造層序区分と地質時代(木村,2000)

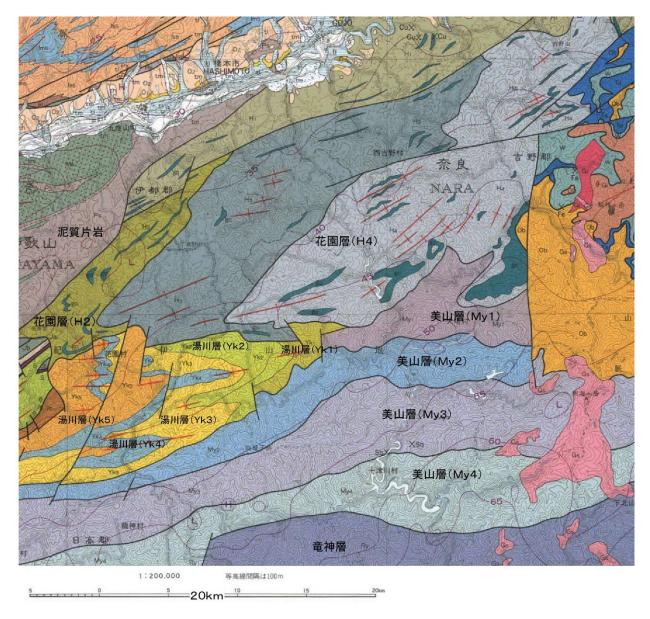
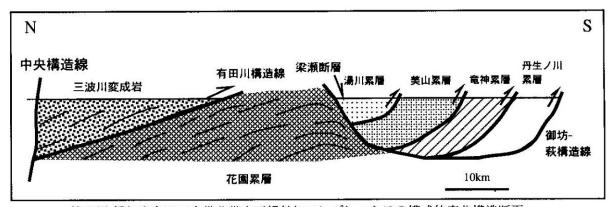



図 5 紀伊山地北部の地質図(栗本他, 1997)

第6図 紀伊半島四万十帯北帯白亜紀付加コンプレックスの模式的南北構造断面

図 6 紀伊山地北部四万十帯の模式的地質断面図(木村,2000)

3. 四万十帯における崩壊の事例

四万十帯では一般に隆起速度も速く,また,南海トラフに沿う巨大地震や豪雨災害を何度も経験してきている.1707年には,我が国最大の歴史地震である宝永地震によって四国のカナギで大規模な崩壊が発生した.紀伊山地では1889年(明治22年)十津川水害や1953年(昭和28年)有田川水害で斜面崩壊による甚大な被害が発生した。また,2006年には九州山地の四万十帯で台風14号によって大規模な斜面崩壊が多発した。さらに,近年ではこのような急激な崩壊にはいたらなくても,ダムの建設に伴う貯水池周辺の地すべりが問題となる事例も増えている。また,2007年の奈良県の国道169号法面崩壊など,道路法面の岩盤崩壊の事故も発生している。

1) 九州山地における小起伏面と斜面変形, 地すべり

2006年9月4日から6日にかけて台風14号が九州山地の東側に豪雨をもたらし、耳川流域の諸塚村では総雨量1000mmに達した.その結果、耳川流域の5か所で大規模な崩壊性地すべりが発生した.最大のものは体積330万㎡であった.

地形的にみると、これらは耳川の河床から 150m から 300m 上に発達する遷急線沿いに発生した(図 7). この遷急線は、耳川に向かって低下する尾根線沿いの断面図を複数重ねた図(図 8)にも明瞭にみてとることができる. この遷急線は、耳川沿いに断続的に 10km以上連続し、ある時期に耳川の下刻が盛んになったことを示唆している. 九州山地では 30 万から 50 万年前に隆起速度が速くなったと推定されているので、それが原因で遷急線が形成され、また、後退してきたものと考えられる.

これらの崩壊は、いずれも発生前に上部に小崖を伴っていた斜面が崩壊しており、事前に斜面が変形していたことがわかる。上述の遷急線の形成と後退は、そ

図 7 2006 年台風 14 号によって発生した大規模な 崩壊、耳川流域、白線は遷急線を示す、崩壊は 遷急線付近から下方斜面に発生している.

の背面の岩盤の斜面下方からの支えを取り去ることになり、斜面を重力的に不安定化させた. その結果、岩盤が徐々に変形し、それが最終的に降雨によって崩壊した. つまり、これらの斜面は崩壊前にある種の限界状態にあったと考えられる.

これらは、諸塚層群の砂岩と泥岩の分布域で発生したもので、大局的には地層の層理面が流れ盤構造をなす斜面と走向方向の斜面とに発生したものである。ただし、層理面が50度から70度の傾斜の斜面で発生したものもあり、これらでは層理面およびそれにほぼ平行な断層とともに、低角な断層の組み合わせによってすべり面が形成されていたものと考えられる。

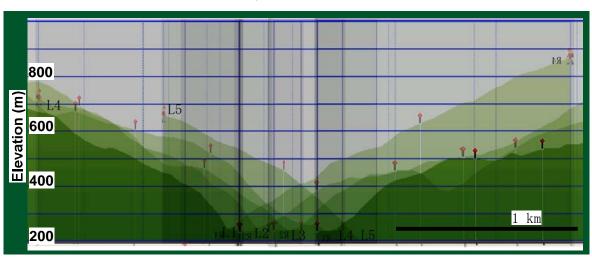


図8 耳川に向って低下する尾根沿いの地形断面.右岸と左岸と、複数の断面を重ねている. 標高 400m から 500m に明瞭な傾斜変換点が認められる.

2)四国山地における小起伏面と斜面変形,地すべり カナギ崩れ

四国山地の四万十帯では、1707年の宝永地震の時にカナギ崩れが発生した。図9は、カナギ崩れ周辺の地形図であるが、山頂部が丸みを帯びた緩斜面となっていること、カナギ崩れはこれらの緩斜面の縁で発生していることが明瞭にわかる。カナギ崩れの東側の緩斜面には地層の走向方向の線状凹地が発達しており、この地形的特徴と地質調査結果から、地層が斜面下方に倒れかかるような山体変形があったことが明らかになっている。すなわち、年代はわからないが、ある時期に小起伏面が形成され、その後、それが削剥され、その削剥とともに小起伏面の周辺に自由空間が形成されるため、そこで斜面変形が発生したと考えられる。

阿讃山地

阿讃山地は,徳島県北部にあり,南側を中央構造線

び中腹の高標高部には小起伏な面が発達し、これが地 すべりによって解体されている過程を見ることができ る (図 10). この小起伏面には片岩を含む円礫を認め ることができる. 山頂緩斜面の縁には地すべりの前兆 を示す線状凹地が確認できる場所もあり, 現在も山体 変形が徐々に進行していると考えられる. 山頂緩斜面 の他に, 山腹にも地すべり起源ではない数段の緩斜面 とその下限の傾斜変換部が認められる. これらは河川 に沿って分布し, 複数回の隆起の活発な時期と侵食復 活があったことを示している. 新たに形成された傾斜 変換線付近は、下部が侵食されると重力的に不安定と なり、そこで地すべりが発生し、その場所の傾斜変換 線は地すべりの冠頂へ後退した.地すべり地形は、山 脈の北部に比べて南部に多く, 特に向斜軸付近の流れ 盤斜面に集中している.地すべりの移動の卓越方向は, 和泉層群の地層の傾斜方向とほぼ同じであった.

によって限られた山地である. この山地の山頂部およ

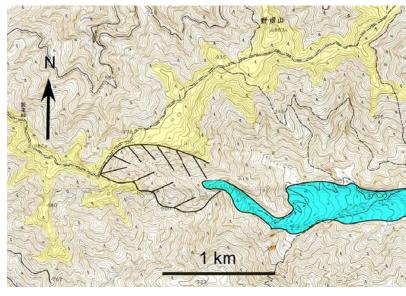


図9 カナギ崩れ.1707年の宝永 地震によって発生した.崩 壊は山頂の小起伏領域を えぐるように発生した.

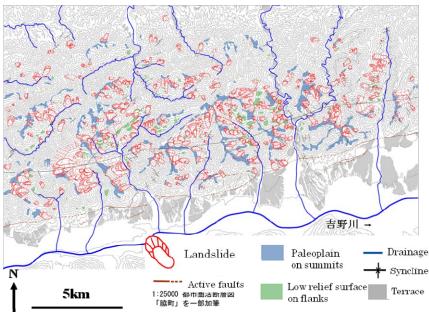


図 10 阿讃山地に おける山頂と山腹 の小起伏面と地す べり地形の分布. (松本充弘原図)

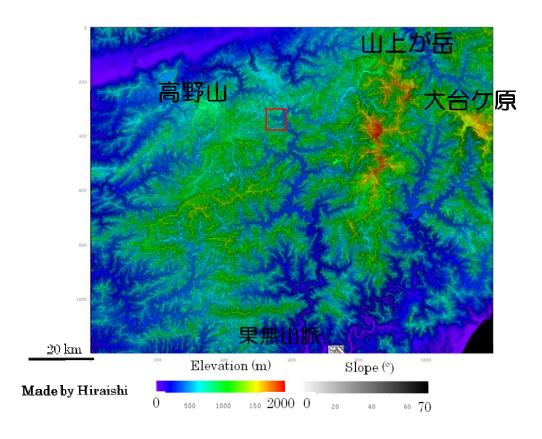


図 11 紀伊山地中央部の地形表現図 (標高図と傾斜図の重ね合わせ). 四角は中原地区.

3) 紀伊山地

紀伊山地には大台ケ原や高野山などの小起伏面が高標高部に存在することが古くから知られている. それらは隆起準平原と考えられているが, その形成年代などの詳しいことは明らかになっていない. 国土地理院発行の 50m メッシュの DEM を用いて地形表現図 (Doshida et al., 2006) を作成して地形を解析した結果,

小起伏の領域は上記のように顕著なものだけでなく、 十津川上流部に広く広がっていることが明らかになった(図 11). また、これらの小起伏の領域を十津川が 侵食している様子が明瞭にみとめられた(平石,2008).

小起伏の領域の縁の部分-五条市中原地区-で地形と地質の詳細な調査を行った(平石・千木良,2008). その概要を次に述べる.この地域には緩傾斜で小起伏な「小起伏域」と,急傾斜で大起伏な「大起伏域」とがみとめられた.「大起伏域」は「小起伏域」の領域を河川に沿って虫食いするように広がっており、両地形領域の境界は遷急線となっている.

50m メッシュの DEM と 2 万 5 千分の 1 地形図を用いて斜面の遷急線と河床縦断面における遷急点の抽出をおこなった結果, 比較的連続性のよい遷急線は 2 本存在し,各遷急線にはそれらにおおよそ対応する河川の遷急点が存在した.上位の遷急線 L1 は,傾斜の変化が最も大きな遷急線で,前述の小起伏域と大起伏域とをわける. L1 は北向き斜面で不明瞭であった.下位

の遷急線 L2 は斜面の最基部にあり、その下方の河床 との間に比高およそ 50m の急斜面をもつ.

0.5m メッシュの DEM から作成した中原地区の地形表現図 (図-3) より、中原地区の北向き斜面について以下の地形的特徴がみとめられた。すなわち、谷の発達が悪い、山頂部に線状凹地が断続的に分布する、大小の馬蹄形の崖や不規則な形態の凹凸が分布する、山腹が一部斜面下方へ膨らみ出している、標高 700m 前後の山腹には、断続的で不明瞭な遷急線 L1 がみられる。斜面基部には遷急線 L2 が分布する。

遷急線と遷急点の分布から、調査地域の山地斜面は、 基本的に、旧地形としての小起伏な地形が河川の侵食 によって開析されて形成されてきたと考えられる.

中原地区の北向き斜面にみられる,谷の発達が悪い,線状凹地,馬蹄形の崖,不規則な凹凸,山腹の膨出,といった地形的特徴は,岩盤の緩みと山体変形を示しており,岩盤クリープ性のマスムーブメントが進行してきたことを示唆する.よって中原地区北向き斜面における遷急線 L1 は小起伏域と大起伏域の境界として河川の下刻によって直接的に生じたものではなく,斜面における崖や凹凸の形成,山腹の膨出といった山体変形の結果として生じたと考えられる.遷急線 L2 は,斜面の主な変形が起きた後の下刻,あるいは変形が追随できない急激な下刻によって生じたと考えられる.

北向き斜面でこのような変形が生じるのは、北向き 斜面が流れ盤斜面であるためで、層理面や断層等の面 構造が岩盤のクリープを促進していると推測される. 当地域の地層は、基本的に走向 ENE、傾斜 $30^\circ \sim 40^\circ$ N で、北向き斜面が流れ盤となる。高角〜低角の 3 方向の割れ目(節理または断層)がみられたが、そのいずれも北傾斜であり、北向き斜面は層理面においても割れ目においても顕著な流れ盤斜面となっていた.

紀伊山地中央部猿谷ダム周辺地域における山地斜 面は、以下のように発達してきたと考えられる. 時代 は明確ではないが、ある時に小起伏面が形成された. その後,急激な隆起に駆動されて河川の下刻が復活し, 河川に遷急点が形成され, それが上流に移行するとと もに小起伏面が河川に沿って開析され, 新しい谷壁斜 面が形成された. このとき斜面には遷急線 L1 の原型 が形成された. その後, 起伏が増し, 基部が急となっ た斜面は重力的に不安定となり, 地質構造に影響を受 けながら変形し始めた. 受け盤斜面では, 主に崩壊と 支谷の発達による侵食が進行し、遷急線 L1 は斜面上 方へ後退し小起伏面は縮小していった. 流れ盤斜面で は、大小規模の岩盤の変形が斜面のあちこちで進行し、 緩傾斜で不規則な凹凸に富む斜面が形成された. その 結果, 遷急線 L1 と小起伏面は変形して元の形態をほ とんど失った. その後再び河川の下刻が著しくなり, 遷急線 L2 が形成された.

上に述べたような地形発達は、中原地区だけに起こったことではなく、紀伊山地に広く当てはまるものと考えられる. 小起伏領域の形成はこの程度の広い範囲にわたって起こったことであるし、それを十津川や北山川などの河川が侵食しつつあり、これらの結果が上記の地形発達と理解できるからである.

地形発達と地すべり・崩壊

前述したように、紀伊山地には小起伏領域が広がっており、これらの領域の削剥に伴って、その縁の領域の流れ盤斜面で岩盤斜面が変形している様子が明瞭に認められた。これらは、必ずしも明瞭な地すべり地形として地図上に示すことのできるものではなく、不規則な凹凸として地形に表れていた。その中の一部は、馬蹄形状の滑落崖を持ち、明瞭な地すべりに移行しつつあるものもある。さらに、中原地区では現河床から50m程度高い位置にも遷急線が認められた。

このような山体変形は非常に緩慢に進むものであるが、降雨やダム貯水池の湛水に伴って急激な動きに転じることもある。山体変形は空中写真では明確には認められないこともあるが、上述のような地形発達を考えると、ある程度広い領域を変形した領域や安定な領域として考えていくことが可能であろう。中原地区で認められた遷急線L1だけでなく斜面下部の遷急線L2は、筆者らの予察調査によれば、紀伊山地の広い地域に認められるようである。ただし、L2はもともと急傾斜の大起伏領域に形成されたものであり、その分布は断続的となっている。2007年1月には北山川上

流の国道 169 号線で岩盤法面の崩壊があり、4 名の方が亡くなったが、この法面もこの下位の遷急線直下にあったようである. 遷急線は、斜面の削剥が急激に進んでいる箇所であり、その内部の岩盤の変形と不安定化が進んでいる領域でもあると考えられる.

昭和 28 年には,有田川流域に豪雨災害があり,金剛や北寺で大規模な崩壊が発生し,これらの発生場が遷急線直下であったことが指摘されている(平野,1993). また,前述した阿讃山地においても,小起伏面が削剥されて遷急線が形成され,その付近で地すべりが発生することが上野・田村(1993)によって指摘されている.

謝辞:本報告のうち、阿讃山地については松本充弘 (2007)、紀伊山地の中原地区周辺に関する部分については平石成美の研究によるところが大きい. また、中原地区の航空レーザースキャナ計測は朝日航洋株式会社によって実施されたものである. ここに謝意を表する

- 上野将司・田村浩行(1993)地形解析図に対する地質工 学的考察,日本応用地質学会平成5年度研究発表 会講演論文集,97-100.
- 平野昌繁 (1993) 地形発達史と土砂移動. 山地保全学 (小橋澄治編,文永堂出版),7-47.
- 狩野謙一. 村田明広 (1998) 構造地質学, 朝倉書店, 298 p.
- 木村克己(2000)四万十帯の付加地質―奈良県南部を 例にして―.(千木良雅弘編,十津川災害 111 周 年記念集会―斜面災害発生場所予測に向けて―, 京都大学防災研究所研究集会 12 S-3), 5-11.
- 栗本史雄,牧本博,吉田史郎,高橋祐平,駒沢正夫(1997) 20万分の1地質図「和歌山」. 通商産業省工業技 術院地質調査所.
- 平石成美・千木良雅弘(2008)紀伊山地中央部の斜面 地形の発達. 2008 年度日本応用地質学会研究発表 会講演集.
- Doshida S, Chigira M, Nakamura T (2006)
 Characterization of Landslides by using Precise DEM
 Data in Ribira, Hokkaido, Disaster Mitigation of
 Debris Flows Slope Failures and Landslides,
 UNIVERSAL ACADEMY PRESS, 1, pp.91-99.

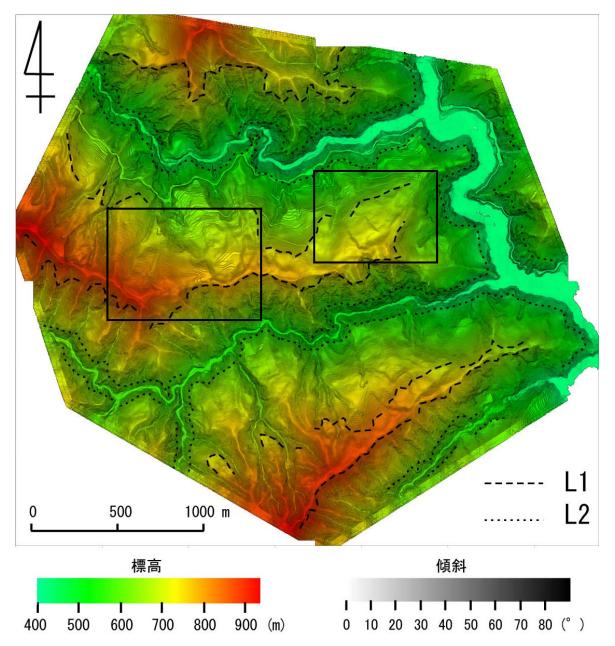


図 12 十津川上流の中原地区周辺の地形表現図(平石・千木良, 2008). 航空レーザースキャナによる 50cm メッシュの DEM (朝日航洋株式会社作成) を用いた. L1,L2 の 2 つの遷急線が, 北向き流れ盤斜面を除いて明瞭に認められる.

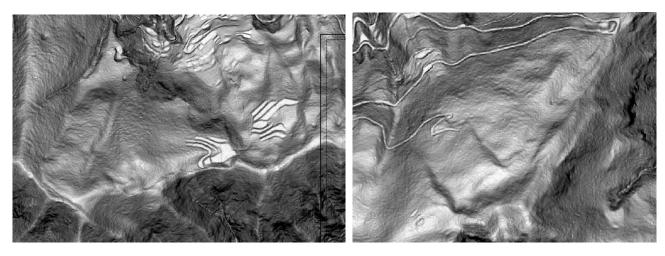


図 13 十津川上流中原地区に見られる山体変形 (陰影図). 左:図 12 の左四角枠,右:同右四角枠.

[話題提供]

宇井地すべりの発生とその対応

-地すべり崩落予測が的確に実施出来た被災事例-

杉浦寛久 (奈良県五條土木事務所工務第一課) 岡田 肇 古山貴久 (日本工営株式会社)

1. はじめに

一般国道168号は、和歌山 県新宮市を起点として、紀伊半 島内陸部の田辺市、奈良県十津 川村、五條市を経て、大阪府枚 方市に至る実延長約180km(奈 良県域約123km)の主要幹線道 路である。

平成16年8月、多量の降雨 や台風により、旧大塔村(現五 條市大塔町)宇井地区において 地すべりが発生し、約120mに

図2 調査地全景空中写真

わたり一般国道 168 号が崩落した。 図1 位置図 このため、一般国道 168 号は通行止

となり、県道高野辻堂線での迂回を余儀なくされた。約3年半を経て平成20年3月18日に、崩落部分の災害復旧工事が完了し、供用を開始した。

表1 宇井地区地すべり経緯

平成 16 年 1 月	国道部に段差亀裂が発生していた。
平成 16 年 2 月	国道部の段差亀裂が顕著となる。また道路上部の法枠および擁壁に亀裂が多数発生す
	る。地盤伸縮計4基、クラックゲージ4基を設置。観測を開始する。
平成16年5月3日	法面の一部で崩壊発生。土砂撤去・モルタル吹付・大型土嚢の施工実施。
平成 16 年 5 月 7 日	斜面上部に新たな亀裂を確認。地盤伸縮計を4基追加設置。観測頻度を2回/週とする。
平成 16 年 7 月 31 日~8 月 1 日	台風 10 号接近に伴い、地すべりが活発化。
平成16年8月5日	8月4日からの降水により、更に地すべりが活発化。
平成 16 年 8 月 7 日	地盤伸縮計 S-7、管理基準値 2mm/時(連続 2 回)超過。
平成 16 年 8 月 8 日	5時10分、地すべり頭部の地盤伸縮計S-6の警報発令。国道168号通行止。
平成 16 年 8 月 9 日	23 時 30 分、S-6 にて 10mm/10 分の変動を確認。対岸道路通行止。
平成 16 年 8 月 10 日	0時15分、地すべり滑落。その後断続的に二次崩壊が発生。
平成 16 年 8 月 12 日	22 時 30 分、三次崩壊発生。
平成 16 年 8 月 26 日	周辺地盤の変動状況を調査するため、地盤伸縮計 S-12~26 を設置。
平成 16 年 9 月 4 日	震度4の地震発生。地盤伸縮計S-12、15、17、19、23、25にて変動を確認。
平成 16 年 12 月~	周辺地盤の変動状況を確認するため、調査ボーリング BV-12~21 の掘進を開始。順次パ
	イプ歪計の観測開始。
平成17年2月~	応急対策工 (コンクリート吹き付け・横ボーリング工) 施工着手
平成17年6月~	恒久対策工施工着手
平成 20 年 3 月 18 日	国道 168 号 復旧 供用開始

2. 被災前の斜面状況等

①地形地質

調査地は奈良県南部の五條市大塔町を流れる熊野川沿いの山地斜面である。周辺には調査地の北東に位置する唐笠岳(標高1,118.1m)をはじめ標高1,000m前後の山々が林立し、山頂より比較的高さのそろった尾根が四方に延びている。これらの尾根に源を発した熊野川やその支流に面する斜面は40°以上の急傾斜をなしていることが多く、50°以上の急傾斜面も少なくない。

山頂付近には緩斜面が存在する場合が多い。これらは、山頂小起伏面の地形で、調査地右岸では標高 800m付近に分布する。一般に緩斜面と急斜面の境界は緩急線をなし、顕著な崩壊地形が認められることが多いが、この地域では緩急線は顕著ではなく大規模な崩壊地形は認められない。

地質は紀伊半島南部の広い地域 を占める四万十累帯であり、北側の 秩父累帯とは仏像構造線でわけら れている。ただし、紀伊半島中央部 では秩父累帯が欠けていて、四万十 累帯が三波川帯と直接に断層で接 している。四万十累帯を構成する地 層は砂岩と泥岩の互層を主とする 単調な岩相のものである。

四万十累帯は御坊一萩構造線と本宮断層とによって北から南へ日高川帯、音無川帯、牟婁帯の3帯に区分されている。このうち調査地は日高川帯に位置する。日高川層群は頁岩・砂岩と頁岩の互層が多く、緑色岩類・チャートおよび酸性凝灰岩を伴う。

この周辺では明治の十津川災 害で多数の大規模崩壊または地 すべりにより、天然ダムが形成さ れている。

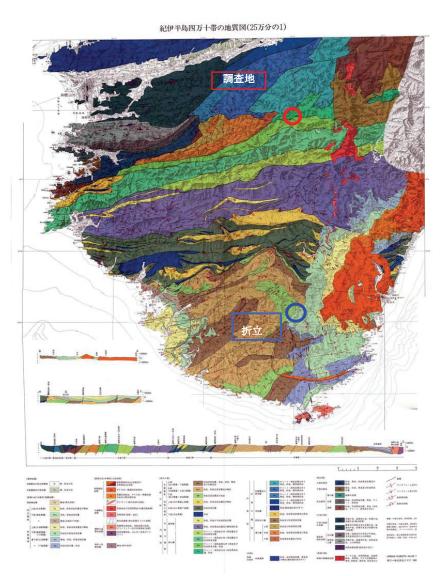


図3 紀伊半島四万十帯の地質図

②災害の発見

平成16年2月に国道の路面に段差、開口等の変状が認められ、5月に至って変状が明瞭になってきた。

③災害の進行

梅雨末期の豪雨と多数来襲した台風による豪雨等の影響で、急速に変動速度が増大し平成 16 年 8 月 10 日未明に崩落した。

④地すべり滑落に至る斜面状況写真(全景写真)

写真1 平成16年4月の全景

写真 2 平成 16 年 5 月の全景 (道路山側法面の崩壊発生後)

写真3 平成16年6月の全景 (道路山側法面の崩壊発生後)

写真4 平成16年8月の全景 (地すべり崩落後)

⑤地すべり滑落に至る斜面状況写真 (現象写真)

写真 5 地すべり頭部周辺の段差 平成 16 年 4 月 21 日 (この時点では地すべり頭部も不明瞭であった)

写真 6 終点側国道法面が崩壊 平成 16年5月上旬

写真7 国道路面に発生した段差 平成16年5月27日 (補修を繰り返して道路の通行を確保していた)

写真8 吹き付け法枠工の変状 平成16年5月27日 (徐々に顕著になってきた)

写真9 国道路面の状況 平成16年5月27日 (全般的には顕著に変状は生じていない)

写真10 国道路面の状況 平成16年6月11日 (徐々に路面の変状が目立ってきた)

写真 11 地すべり頭部周辺の段差 平成 16年7月6日 (現象が徐々に明瞭になってきた)

写真12 山側もたれ式擁壁の変状 平成16年7月7日

写真13 崩落直前の滑落崖の状況 平成16年8月9日 (段差開口が明瞭になってきている)

写真14 崩落直前の吹付法枠の状況 平成16年8月9日 (変状が顕著になってきている)

写真 15 崩落直前の国道路面の状況 平成 16 年 8 月 9 日 写真 16 崩落直前の国道路面の状況 (終点側) 平成 16 年 8 月 9 日 (段差開口が明瞭になってきている)

⑥計器観測結果

地すべり崩落前の斜面の安定度評価並びに道路通行上の安全管理を行う目的で、下記の計器 の観測を実施した。

機器種類	数量	機器種類	数量
孔内傾斜計	1 孔	クラックゲージ	4 基
パイプ歪計	10 孔	クラックピン	3 基
自記水位計	10 基	丁張	1基
地盤伸縮計	8基		

なお、地盤伸縮計は7月13日より自動観測化している。また、警報器を取り付け、管理基準値 (2mm/時に設定) を超過した場合には警報を発令するものとした。

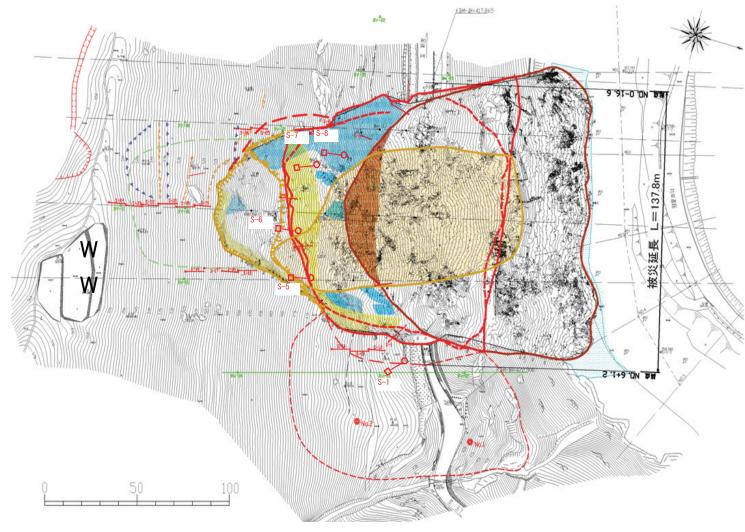
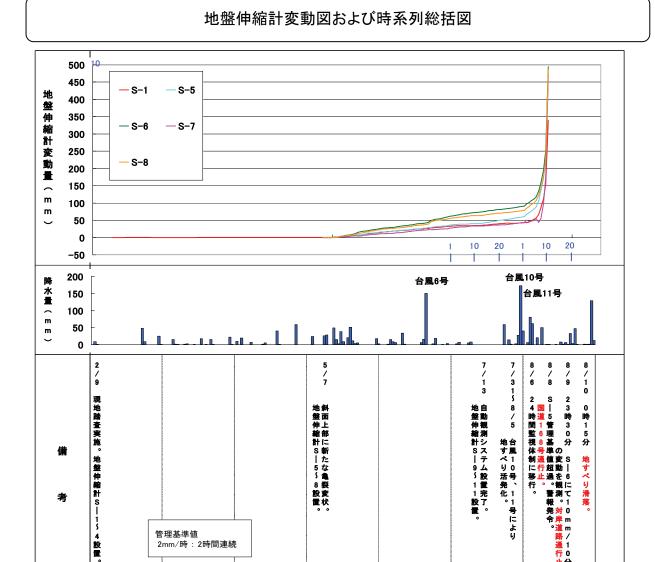



図4 観測位置図

i)地盤伸縮計

全観測期間を通じて、S-1、5~8は極めて顕著な引張変動を示す。また台風10号襲来後の7 月末以降の期間において、変動量が加速度的に増加している様子が認められる。

4月 5月 6月 平成16年

図5 宇井地区地すべり時系列表

7月

8月

ii)パイプ歪計

2月

以下の深度・地質にて地すべり変動を確認した。

3月

- ・ BV-1 (20.0m、砂岩) ・BV-2 (20.0m、砂岩) ・BV-3 (18.0m、砂岩頁岩互層)
- ・ BV-5' (21.0m、頁岩) ・BV-6 (21.0m、砂岩) ・BV-7 (18.0m、頁岩)
- BV-9 (15.0m、砂岩) BV-10 (18.0m、砂岩頁岩互層) BV-11 (18.0m、砂岩)
- ・ いずれの観測孔もまた台風10号襲来後の7月末以降の期間において加速傾向を示している。

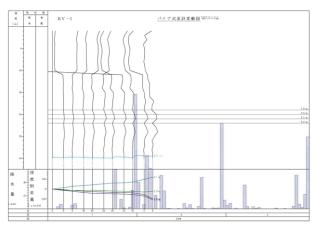


図 6 パイプ歪計変動図(BV-1)

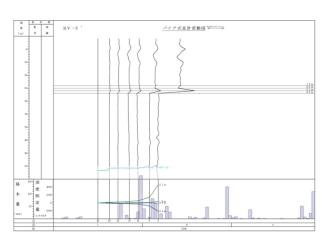


図7 パイプ歪計変動図(BV-5`)

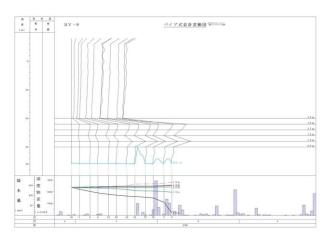


図 8 パイプ歪計変動図(BV-9)

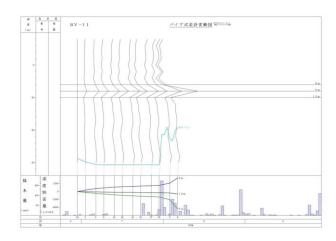


図 9 パイプ歪計変動図(BV-11)

iii) 孔内傾斜計

BV-5において、深度19.0~20.0m(砂岩)において累積変動を確認した。なお、8月3日の観測において深度19.0mにおいて孔曲がりにより観測不可能となった。

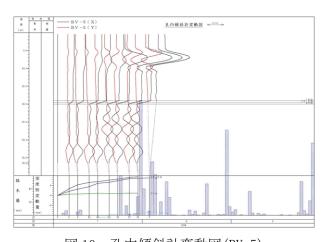
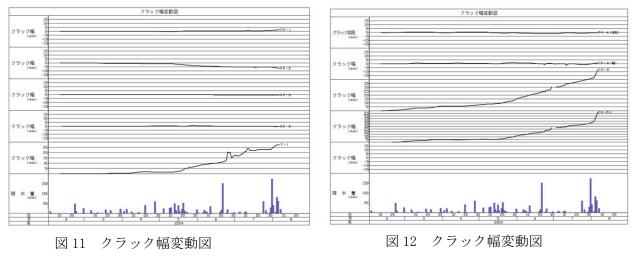



図 10 孔内傾斜計変動図(BV-5)

iii) クラックゲージ観測

CK-2において累積変動は認められたが、変動量は軽微であり、また他の計器については累積変動が認められなかった。

iv) クラックピン観測

国道部(五條市側)の段差亀裂に設置したCK-6、6'について、顕著な開きおよび沈下の進行が認められた。

v)丁張(抜板) 観測

T-1は、観測期間を通じてわずかではあるが累積変動が認められた。

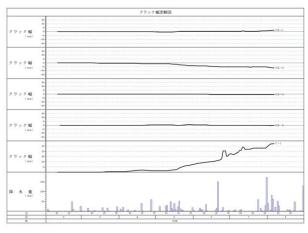


図13 クラック幅変動図

⑥地すべり機構

(1) 地すべり発生の素因

- ・ 地形: 宇井地区地すべりの国道下斜面は、崩壊跡地形を呈している。これは河川の攻撃斜面であり、過去に河川浸食による末端崩壊が発生したためと考えられる。
- ・ 地質:ボーリング結果では、主測線において深度 20m 付近まで、D 級から CL 級の不良な岩盤が分布している。これは末端崩壊により地盤が不安定化し、徐々に岩盤内の変形・風化が進行してきたものと推定される。

・ 以上のことから、末端崩壊による地山の不安定化および風化した D 級から CL 級の岩盤が深度 20m まで広く分布している地形的・地質的状況が素因である。

(2) 誘因

- ・ 平成 16 年 5 月から 8 月において、断続的な降水が認められる。 (総降水量 1150mm)
- ・ 平成16年6月21日の台風6号(降水量167mm)、7月31日の台風10号(降水量244mm)、8月5日の台風11号(降水量149mm)に伴う豪雨により、地すべり地内の地下水位が上昇。
- ・ 風化岩の亀裂内に地下水が流入し、風化の進行および岩盤強度の低下を助長。
- ・ 岩盤内の逐次破壊が進行し、明確なすべり面を形成。最終的に滑落に至ったと考える。
- ・ この降雨は例年より著しく多い。
- 図14 に宇井地区での地すべりの機構について、模式図を示す。

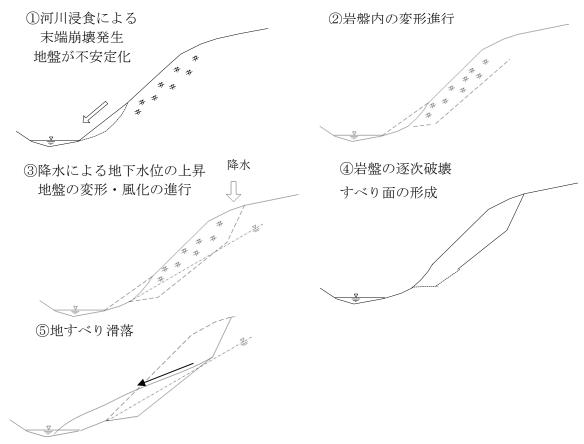


図14 地すべり機構イメージ図(断面図)

(3) ブロック形状

段差クラック等の分布を中心に着目した現地踏査の結果から、当地区の地すべりブロックの規模 を以下のように定めた。

幅	約 120m	奥行	約 110m
---	--------	----	--------

この形状は崩落後の確認の結果とほぼ一致している。

(4) 主測線

主測線の位置・方向を以下の理由により決定した。

- ① 位置は、上流側・下流側の国道部段差亀裂および道路下崩壊跡地形、頭部段差亀裂の範囲の中央とし、地すべり頭部を通り最大断面となる位置とした。
- ② 方向は、頭部段差亀裂の方向から、斜面方向(国道部に垂直)とした。また孔内傾斜計 BV-5 の 移動方向も参考とした。

(5) すべり面

現地踏査と調査ボーリング、計器観測により、すべり面を表 4 に示す深度に決定した。 また、すべり面コンター図を作成してすべり面形状を検討し、図 15 のように推定した。

- ① パイプ歪計・孔内傾斜計の観測結果より、当該深度にて変動が認められる。
- ② 調査ボーリング結果より、当該深度にて D 級から CL 級の風化岩 (礫状コア、岩片状コア) が 確認された。

			衣 り り り 田休皮	
孔番号	推定すべり面深度	孔番号	推定すべり面深度	推定理由
BV-1	20.0m	BV-7	19.6m	
BV-2	19.6m	BV-9	16.4m	12 11 \ 12 12 \ 12 12 \ 12 1 \ 13 1 \
BN-3	18.7m	BV-10	9.9m	・ボーリング調査結果
BV-5	20. 2m	BV-11	9.2m	・パイプ歪計観測結果
RV-6	22 Om			

表3 すべり面深度

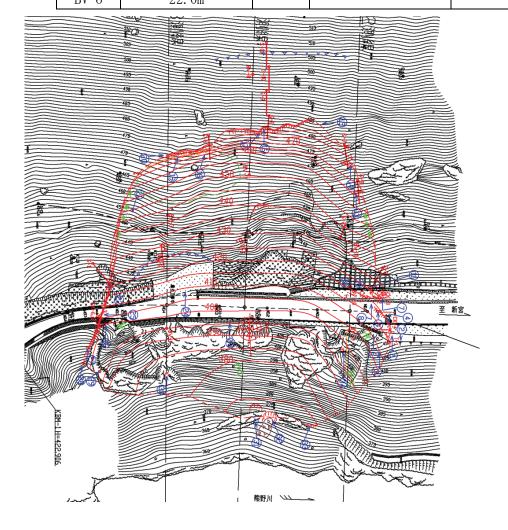


図 15 すべり面 コンター図

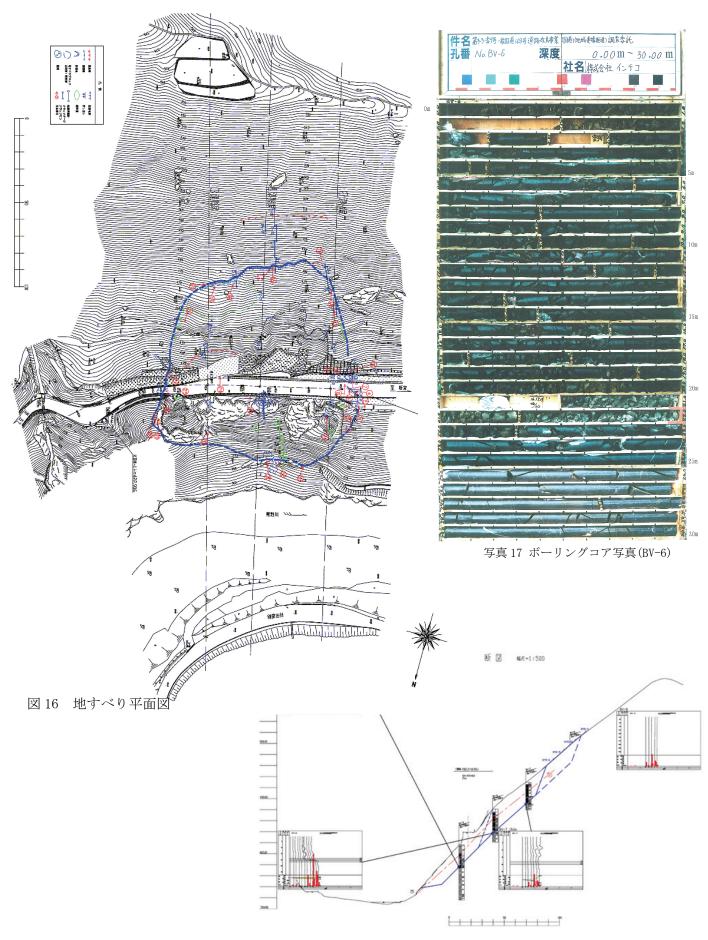


図17 調査断面図(1測線)

(6) 計器変動から推定される地すべり滑動状況

① 地盤伸縮計

- ・ 地すべりブロック内部の計器には変動が認められないことから、当地区地すべりについては、 ブロックが一体化した滑動をしたと判断される。
- ・ 右側部の上部斜面に設置した伸縮計 S-7、8 については、他の計器より大きい変動を示したが、これはパイプ歪計 BV-9 のデータから明らかなように、右側部についてはすべり面が浅くなっているためと考えられる。これには、現地踏査で認められた法面工の変形や法尻の押し出し等地表面に表れた変状と一致する。

② パイプ歪計・孔内傾斜計

- ・ 道路下の孔内変位位置は、ボーリングコア状況が比較的新鮮な岩盤の亀裂(空間)位置で確認 される。
- ・ また、地表踏査により、末端部は岩盤が確認され、とくに地すべりブロックを挟んだ左右の尾根部の岩盤は高さ5~10mの露岩を呈し、また亀裂が発達し、部分的に崩壊が確認された。
- ・ このことから前述した機構解析で述べたように、平成 16 年当初の段階では上部斜面が風化し変 形が進行していたものの、末端部にまでは変形が進行しておらず、上部斜面全体を支えていたも のと考えられるが、今年度の豪雨に伴う変形の進行により、末端部の岩盤においても変形が進行 し、最終的に上部からの土塊荷重に耐えきれなくなり、末端部岩盤が破壊され、地すべりブロッ ク全体が滑落したと推定される。

(7) 崩壊予測

- ・ 地すべり滑動が活発化するに従い、国道 168 号の安全管理のため通行止、クリープ予測式(斉藤式)を用い、地すべり頭部に設置した地盤伸縮計 S-6 の変動量を基に崩壊予測を行った。滑落予想時刻は斉藤式で予測した時刻とほぼ等しい結果となった。
- ・ 当地すべりにおいて、滑落予想時間がほぼ予測式と等しくなった要因を以下のように考える。
- ① 地盤伸縮計を地すべりの移動方向にほぼ平行に設置できた。
- ② 岩盤すべりであるため、滑落に至るまでには二次クリープ領域が運動のほとんどを占め、三次クリープ領域が短時間であった。
- ③ 地すべりブロック全体が一体となって動いたため、伸縮計で観測されるデータに対し、ロス(遊び)が少なかった。

3. 被災状況

平成16年8月10日の崩落後は、滑落崖上方斜面にて数度の2次崩壊が認められたがその後斜面は概ね安定した。熊野川に崩落した土砂は流水の阻害要因となり、その後の23号台風では対岸道路の災害を引き起こしたが、崩落した土塊自体が不安定となり流出することはなく、地すべりの安定性は工事完了まで保たれた。

①被災状況写真

写真 18 崩落範囲全景 (対岸道路より望む) 幅約 120m, 奥行き約 150m

写真 19 崩落範囲全景 対岸集落より望む

写真 20 頭部滑落崖の状況(h≒8m) 左側側部より望む

写 21 頭部滑落崖の状況(h≒8m) 右側側部より望む

写真 22 滑落した国道 168 号線 形状をほぼ維持したまま、約 15m落下した

写真 23 土塊の崩落状況 約 15m下方に、滑落した道路面が認められる。 その上部の杉林も地山ごと滑落したものである

写真 24 崩落土砂の堆積状況 上流側より望む

写真 26 崩落土砂の堆積状況 下流側より望む

写真 28 尾根付近に認められる陥没地形 W=3.5m

写真 30 崩落斜面東側の斜面状況(国道下) 左側側部付近に露頭する砂岩(H=2.5m)

写真 25 国道下における右側側部の状況 崖面には、薄い表土および強風化岩層が認められる

写真 27 左側頭部付近に発生した亀裂(写真 21 の亀裂を拡大) 一部で段差(H≒10cm)が認められる 崖面には、薄い表土および強風化岩層が認められる

写真 29 斜面内に認められる砂岩露頭 走向: N66° W75° N(高角度亀裂面) 節理面の傾斜角: 40°

写真31 露岩に認められる湧水の状況

②崩落後の地すべり状況

(1) 滑落した地すべりブロック

滑落後の測量結果から、上部斜面付近については土塊が厚く堆積している地形状況を呈しており、当初推定していたすべり面(深度 20m)より浅層で滑落した可能性が考えられた。また滑落前に行ったパイプ歪計 BV-7 の観測結果からも浅層(7~8m)での変動が認められることから、当地区地すべりは完全に滑落せず、主測線の BV-7 付近の上部斜面には残存土塊が存在している。そのためこれら残存土塊に対しては抑止工・抑制工が必要である。

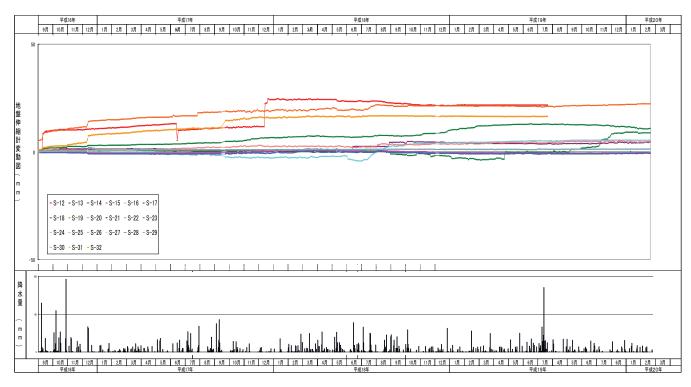


図 17 滑落後の地すべり変動状況(地盤伸縮計)

(2) 地すべり頭部背後斜面

滑落範囲は、当初推定していた地すべり頭部から若干山側に拡大し、滑落前の現地踏査で認められた遷急線付近まで追随している。滑落前に実施した調査ボーリング BV-8 においても、深度 20m 以深まで強風化層が認められ、今後さらに上方まで崩壊する可能性が考えられる。

9月4日に発生した震度4の地震により、周辺斜面に設置した地盤伸縮計に変動が認められた。主 測線上ではS-19、S-23で変動を観測した。このことから地すべり背後斜面も緩みが波及しており、不 安定化しており今後の変状の拡大の恐れがある。

そのため地盤伸縮計 S-23 付近を頭部としたすべり土塊に対しての抑止工・抑制工が必要である。

(3) 五條側斜面

地すべりに隣接する五條側斜面については、崩落直後のパイプ歪計観測結果では変動は認められなかったものの、全体に地質状況が悪く、今回の地すべりブロック内と同様に深度 20m 付近まで強風化層が厚く分布しており、空洞も多く認められる。

また道路改良計画と地すべり対策工の整合をとる上で、復旧工法は橋梁工となっており、橋台のための掘削が計画されていた。五條側斜面についても、地すべり対策の抑止工・抑制工を実施した。すべり範囲は、縦断的には今回滑落した地すべりと同等と考え、頭部は微地形が認められる標高 469m 付近、末端部は遷緩線が認められる標高 380m 付近、横断的には地すべり側方から上流側の沢部とした。

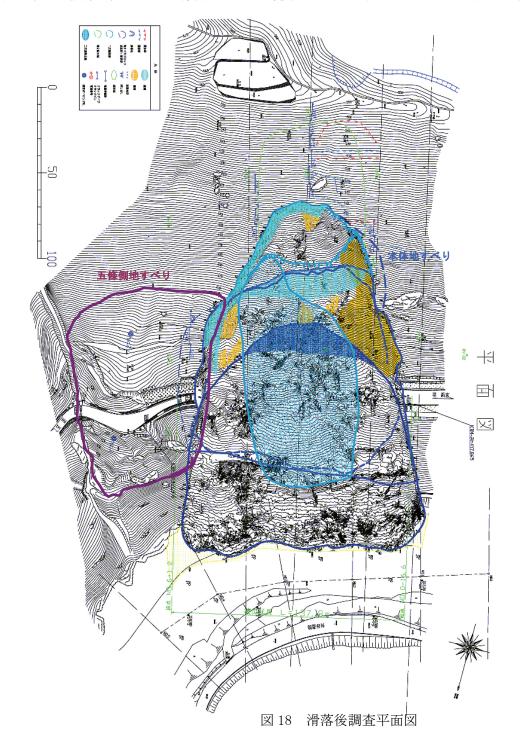


写真 32 LP 図作図時期の斜面全景

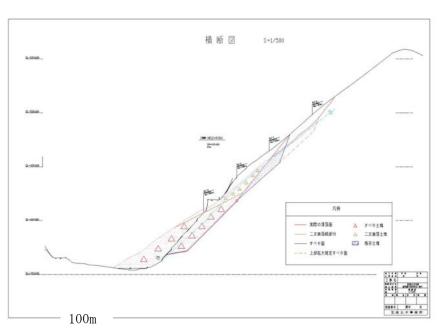
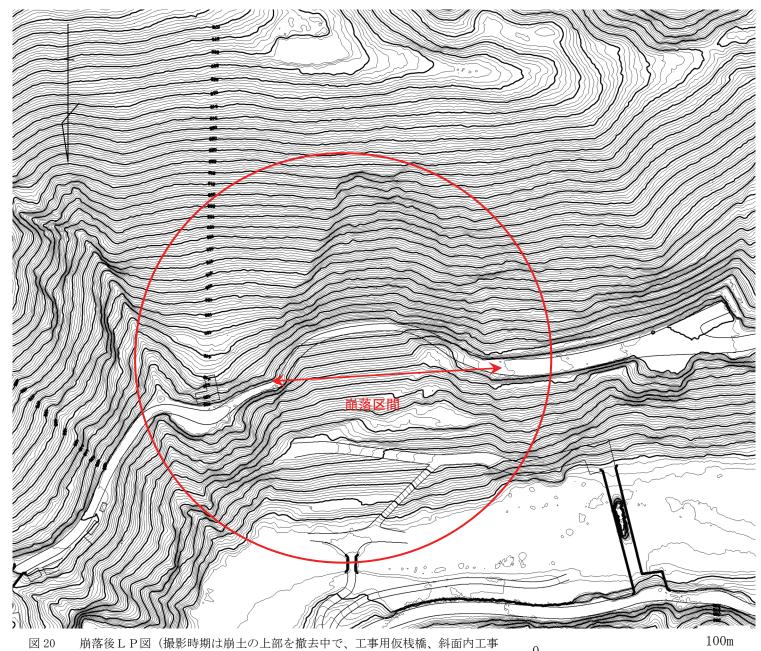



図 19 滑落後調査横断図

用道路が施工されている。周辺地形の特徴を観察出きる資料である。)

4. 地すべり発生機構(崩落に至った要因)

1)素因

前述のとおり不安定な地すべり性の斜面の存在が、発生の素因である。

2誘因

平成 16 年 5 月から 8 月において、例年になく多量の断続的な降水が認められた (総降水量 1150mm)。 平成 16 年 6 月 21 日の台風 6 号 (降水量 167mm)、7 月 31 日の台風 10 号 (降水量 244mm)、8 月 5 日の台 風 11 号 (降水量 149mm) に伴う豪雨により、地すべり地内の地下水位が上昇し、風化岩の亀裂内に地下 水が流入し、風化の進行および岩盤強度の低下を助長され、さらに岩盤内の逐次破壊が進行し、明確な すべり面を形成して最終的に滑落に至ったと考えている。

5. 崩落の予知と危機管理体制

地すべり発生が判明していたため、崩落前に地すべり調査が実施されていた。また地すべり自動監視システムによる斜面監視が実施されていた。さらには崩落時には衛星通信車による監視も実施されていた。

これにより斜面変動状況のリアルタイムの把握と警戒避難体制の構築をしていたので崩落前に国道の通行止を行い、人的な被害を防ぐことができた。

6. 対策工法の検討

1) 概要

地すべり防止工事に採用する標準的工種を「河川砂防技術基準(案)同解説」より抜粋し、図に示す。

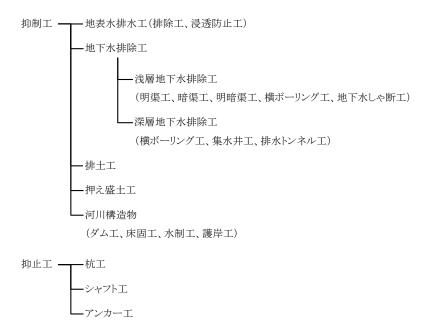


図 21 地すべり対策工の種類 (建設省 河川砂防技術基準 (案) 設計編)

ここでは次の対策工検討フローに従い、対策工法の選定を行った。

1) 対象

① 道路路面

国道168号が延長120mに渡り滑落した。 この被災範囲の道路復旧を行った。

② 地すべり

国道を含んで地すべりが発生し、河川を 閉塞させた。このため国道および河川断面 の復旧対策を行った。

③ 地下水

滑落後に地すべり右側部の露岩から湧水が確認され、地下水位が高い斜面であると判断された。地すべりは台風による集中豪雨を誘因として発生したため、抑止工の他に横ボーリング工を計画して、コスト低減を図りつつ原因排除に努めた。

2) 対策工法

① 国道部復旧

国道部復旧には、アンカー付鋼管杭工+ 軽量盛土工案、深礎工案、橋梁案などの比較を行い、橋梁工法にて実施した。

② 道路山側斜面

START 応急対策 (応急対策) 抑制工 排土・盛土が 可能か 活動に影響する降雨特性 No ▶ 地下水排除工 浅層地下水 排除工中心 排土工・盛土工 活動が 停止したか]Yes 恒久対策 (恒久対策) 活動に影響する降雨特性 地下水排除工 浅層地下水 排除工中心 + 必要に応じて 地下水排除工併用 es→排土工、盛土工 No 積極的な 地下水排除工 可能が 必要に応じて 地下水排除工併用 + 抑止工 勾配が 大か 規模 ※すぐに滑動に結びつく降雨 . 小~中 景観 アンカーエ 杭工 シャフトエ

図 22 原則的な施設計画の流れ(恒久対策) (建設省河川砂防技術基準(案)同解説 計画編 P-197)

地すべり地内には残存土塊が存在し、また地すべり頭部背後斜面には、地震時に変動した地すべりが確認された。これらは、斜面勾配が急であり、また地形的な制約から、アンカー工を主要工法とするのが適しているとし施工を行った。

またブロック内の表層は、風化の進んだまたは亀裂の多い岩盤から成るため表層の安定確保のため原則として法枠工を施工し、また緩みが顕著であった箇所、アンカー工の下など重要な箇所については筋挿入工を実施した。

③ 道路谷側斜面

地すべりが滑落し、河川を閉塞させているため、河道確保を目的として崩土を除去する必要がある。しかし全量を排土した場合、排土量が膨大となること、河川沿いの斜面保護の観点から、アンカー付鋼管杭工を施工して可能な限り排土量を少なくした。

④ 五條側斜面

道路改良計画と地すべり対策工の整合をとる上で、復旧工法は橋梁工とした。施工には橋台の掘削等を行い斜面が不安定化する恐れがある。また恒久的に橋梁を保護するため鋼管杭工(SM570 相当材 ϕ 800mm×37mm)を主体とした地すべり対策工を施工した。

2) 採択復旧工法

①災害決定工法

地すべりを確実に抑止し、安全な国道復旧を図るため、国道部をアンカー付鋼管杭工+軽量盛土工に て復旧する工法が災害査定にて採択された。

②合併復旧工法

当地区に連続する辻堂バイパスの道路改良工事との整合性を図るため、災害査定にて採択された道路 復旧工法(アンカー付鋼管杭工+軽量盛土工)を合併により橋梁工に変更した。基本の地すべり対策は 同等である。

国道の復旧工法

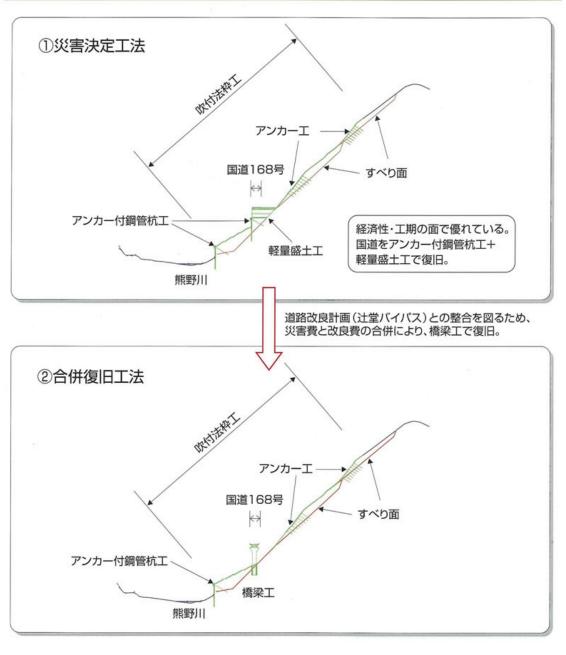


図23 国道の復旧工法

7. 施工の流れ

①応急対策

崩落後は国道の迂回を行い、また斜面は一応の安定が確認され たため恒久工事着手まで監視により安全を確保した。復旧工事着 手に当たっては施工の安全確保のため応急本工事として、地すべ り頭部周辺の、応急横ボーリング工と仮設モルタル吹き付け工が 平成17年2月より施工された。この応急工事により斜面内への 立ち入りが可能となった。

②恒久対策

応急対策により斜面内立入が可能となったため、平成 17 年 6 月より上部斜面から順次崩土の除去と法面工の恒久対策工が施 工された。

写真33 応急コンクリート吹付工

地すべり残存土塊については、現状の安全率 (Fs=1.00) を「横 ボーリング工(集水ボーリング工)」で5%上昇させ、計画安全率(Fs=1.20)に不足する安全率を「ア ンカーエ」で抑止することとした。

国道部は、崩土を上記アンカー工にて抑えてすべり面を露出の上、この場所に橋脚工を施工し、3径 間連続桁による橋梁とした。

河川部については、「アンカー付鋼管杭工」で土留め壁を施工し、可能な限り排土量を少なくするよ うに計画している。

8. おわりに

平成20年3月18日に対策工の主要部分が完成し通行止であった道路が約3年半を経て開通した。 大規模な地すべり災害であったことから、工事中の安全を確保するため、自動監視システムにより、 リアルタイムの斜面監視と専門技術者による管理を行いながら、復旧工事を行った。

工事開始のころは、一部に局所的に不安定な箇所も見られたが、復旧工事が進むにつれて、斜面が 安定化し、安全に事故無く復旧工事を完了することができた。

写真34 施工完了後の全景

写真35 施工完了後の状況(橋梁上)

「話題提供)

折立地区地すべりの地形的特徴

上村良則(奈良県五條土木事務所工務第二課) 徳永博, 古木宏和(日本工営株式会社)

1. はじめに

国道 168 号は、和歌山県新宮市を起点とし、奈良県十津川村、五條市を経て大阪府枚方市に至る総延長約 170kmの幹線道路である。

本路線は、紀伊半島を南北に縦貫する道路であり、半島内陸部と沿岸部を結ぶ長距離移動・輸送経路として、広域ネットワークの役割を担っている。また、生活中心都市である五條市及び新宮市とその間の市町村を結ぶ生活道路としての機能も有しており、とりわけ山間部の住民にとっては重要な路線である。しかし、道路状況は急峻な地形条件のためすれ違い不能区間、急カーブ区間が連続し、さらに崩土・落石等による通行止めが多く、地域の生活に度々支障をきたしている。

国道 168 号周辺斜面は、新たな道路建設及び現道の維持管理にあたり、注意しなければならない地すべり箇所などの抽出を目的として、レーザープロファイラー地形図が活用されている。折立地区地すべりは、奈良県吉野郡十津川村折立地区に位置し、平成17年から地すべり調査を開始し、計器観測を継続している。また、レーザープロファイラー地形図を活用して現地踏査を行っている。

本報告では、レーザープロファイラー地形図等を用いた地形判読結果、折立地区地すべりの地形的特徴について紹介する。

図 1.1.1 国道 168号位置図

図 1.1.2 折立地区位置図

2. 折 立 周 辺 の地 すべり概 要

2.1 地形概要

1) 広域地形概要

奈良県の地形は、吉野川断層角窪地の中央構造線を境に内帯の北部低地と外帯の南部山地に分かれる。

北部低地は、瀬戸内陥没地帯の東縁にあたり、地溝盆地である奈良盆地の北を笠置山地、西を生駒・葛城・金剛山地、東を大和高原、南を竜門山地が取り囲んでいる。山地は花崗岩質の平頂峰をもち、北ないし南落ちの断層が発達する。奈良盆地は、南北 30km、東西 16km、面積 300km²で、海抜40~60mの平坦な沖積層からなる。盆地内の河川は、求心的に集まって大和川となり、亀の瀬を経て大阪平野に流出するものと、高見山地から発する宇陀川、名張川から、大和高原に発する河川を集めて木津川となり、京都盆地に流出するものとがある。

南部山地は、吉野山地と呼ばれ紀伊山地の脊梁部を占める。吉野川(紀ノ川)の上流部と北山川、十津川の流域を分ける台高山地、大峰山地、伯母子岳山地が、東から西に並ぶ。地形的には、河川の激しい侵食により渓谷が形成され、平坦部は極めて少ない。

2)折立地区の地形概要

調査地は奈良県南端部に位置する、吉野郡十津川村折立地区にある国道 168 号沿いの斜面である。調査地付近は紀伊山地中央部にあたり、南北に延びる大峯山脈と、東西に延びる果無山脈とに挟まれた凹地である。

調査地は標高 829m の斧山から北西に分布する尾根の西側斜面にあたり、標高 $150\sim700$ m を示す急斜面である。この斜面には降雨により発達した山襞が発達し、小谷が山体深くまで切れ込んでいる。

調査地周辺には十津川が南方へ流下し、深いV字谷を形成している。 降雨時には河川の流速および流量が増大するため、土砂の移動量は非常に大きい特徴を有する。

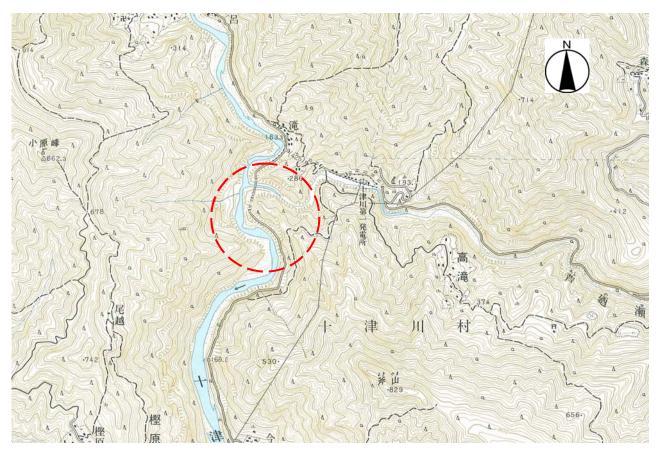


図 2.1.1 調査地周辺 1/25000地形図

2.2 地質概要

1) 広域地質概要

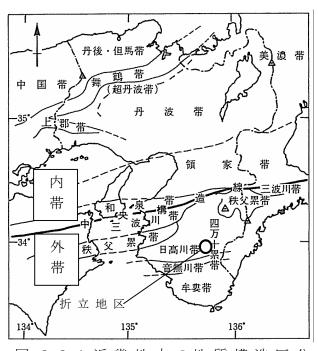


図 2.2.1 近畿地方の地質構造区分

分される。時代は南の方が新しく、東西につながる地層が北側に傾斜し、 瓦を重ねたような構造をなして付加体が分布している。

1)折立地区の地質概要

紀伊半島の地質は、中生代白亜紀に堆積した四万十帯が広く分布する。調査地付近では四万十帯のうち、日高川層群龍神層と呼ばれる地層が分布しており、頁岩・砂岩互層を主とし、部分的に緑色岩やチャートを挟在する(図 2.2.2)。また、調査地付近には、御坊-十津川断層と呼ばれる北傾斜の逆断層及びその分岐断層の重里スラストが分布しており、幅広い断層破砕帯と地層の強い変形が見られる。

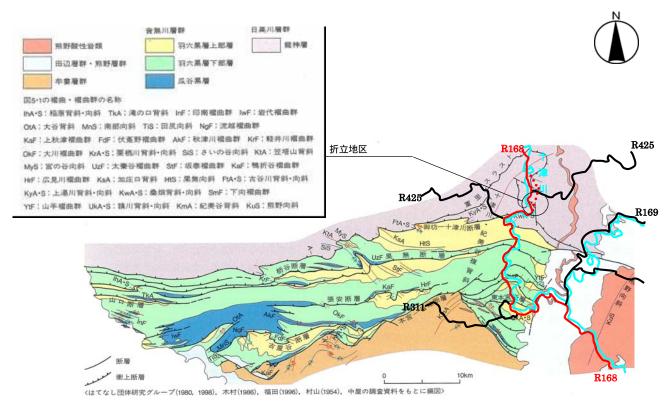


図 2.2.2 調査地周辺地質図

2.3 気象概況

奈良,上北山の月別降水量・平均気温を図 2.3.1 に、奈良県の降水量分布を図 2.3.2 に示す。奈良県の気候的特徴は、地形と同様南北で大きく相違する。気候区分によると、吉野川を境として南部は山岳性気候、北部は盆地で内陸性気候となる。東部山地は内陸性気候と山岳性気候の特徴を兼ねている。すなわち南部の山地における夏は降雨が極めて多く、時には局地的豪雨が起こり、冬は厳しい冬山の様相を呈し、積雪もかなり

深くなる。一方北部盆地部はおおむね降雨は少なく、夏は蒸し暑く冬は底冷えが厳しい。

全般的には台風のような大きな現象による影響よりも、むしろ地形の複雑さによる大雨、河川の氾濫、山崩れ・がけ崩れ等の災害と局地的な強風が目立っている。また、北部盆地部、東部高原地域では夏の干ばつ、冬の夜間冷却による異常低温、霜および霧の発生等の気象災害もしばしば発生している。

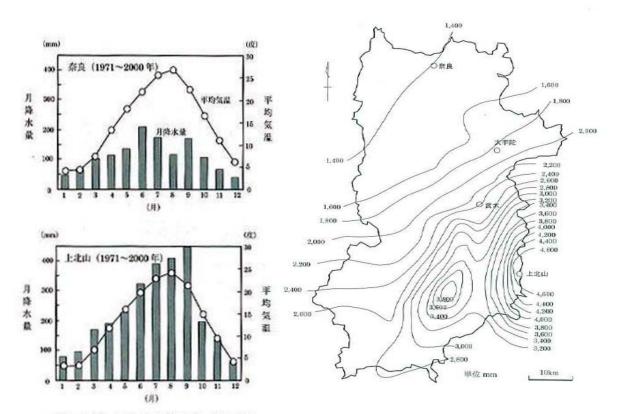


図 2.3.1 奈良,上北山の 月別降水量・平均気温

図 2.3.2 奈良県の年降水量の分布

2.4 地 すべりの分 布と特 徴

奈良県地すべり危険箇所分布・奈良県の地質を図 2.4.1 に示す。すべり危険箇所の分布と地質帯の分布について、領家帯分布域においては、花崗岩と片麻岩など変成岩類が分布し、断層・風化の影響による軟質化の進んだ地域で、崩壊性の地すべりが見受けられる。

三波川帯分布域においては、結晶片岩が主体として分布しており、全体的に破砕が進み、小規模な地すべりが多く見られる。秩父帯分布域においては、三波川帯分布域に接する、西吉野村地域と大峰山脈・台高

山脈地域に地すべり地が分布している。地質構成は全体に硬質であるが、断層や亀裂に沿った弱線の影響から、比較的小規模な地すべりが見られる。

四万十帯分布域は、県南部域のほとんどに分布しており、構成する地層は、砂岩と泥岩の互層を主体とし、断層や褶曲等の影響から複雑な地質構造を呈しており、規模の大きな地すべりが見られる。地すべりタイプとしては、旧大塔村(現:五條市大塔町)の地すべりに代表されるような崩壊性の地すべりが多い。折立地区は、この四万十帯分布域の地すべりに該当する。

第三紀層の分布域は県東部で、曽爾層群の室生火山岩と山粕層群や山辺層群を代表とする堆積岩とに区別される。室生火山岩で発生している地すべりは、溶結凝灰岩の裂か水からの地下水供給により地すべりが発生するキャップロック型である。下位に第三紀層が分布すれば地すべり規模が大きくなり、下位に花崗岩類が分布すれば地すべり規模は小さくなる傾向にある。



図 2.4.1 奈良県地すべり危険箇所分布・奈良県の地質

- 3. 地形判読結果
- 3.1 広域地形判読結果
- 1)リニアメントの分布と大規模地すべり地形

図 3.1.1 に調査地周辺におけるリニアメントと大規模地すべり分布を示す。リニアメントは、北北西から南南東方向が卓越する。リニアメントの分布は、地質帯分布、御坊一十津川断層と調和的であることから、リニアメントの成因は断層や破砕帯に起因するものと推察される。

リニアメント沿いに、大規模な地すべり地形や、大規模崩壊地形の分布が見られる。また、折立地区近傍でも、地すべり方向と平行なリニアメントが分布している。これらの断層や破砕帯に起因すると推察されるリニアメントは、地すべり発生の素因になるとともに、地すべりブロック形状を規制している可能性がある。

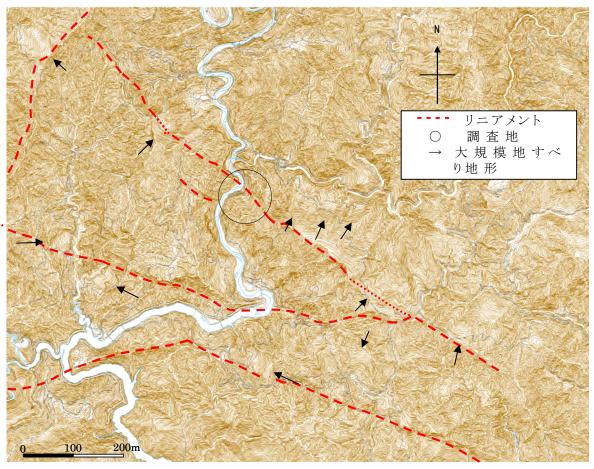


図 3.1.1 リニアメントと大規模地 すべり地形分布

2) 谷線と尾根根線の平面的配置

図 3.1.1 に谷線と尾根線図判読図を示す。 調査地周辺において、十津川は蛇行しながら北から南へ流下し、折立地区付近で小さく湾曲している。折立地区は十津川の攻撃斜面にあたり、大局的にみると、凹形の谷型斜面を呈する。これは十津川による活発な側方浸食を被ったためと推察される。

調査地周辺における水系模様は、大局的に見ると、樹枝状を呈している。 折立地区では、北西から南東方向の谷が卓越する。また、折立地区では、 谷地形の消失という水系異常が認められる。

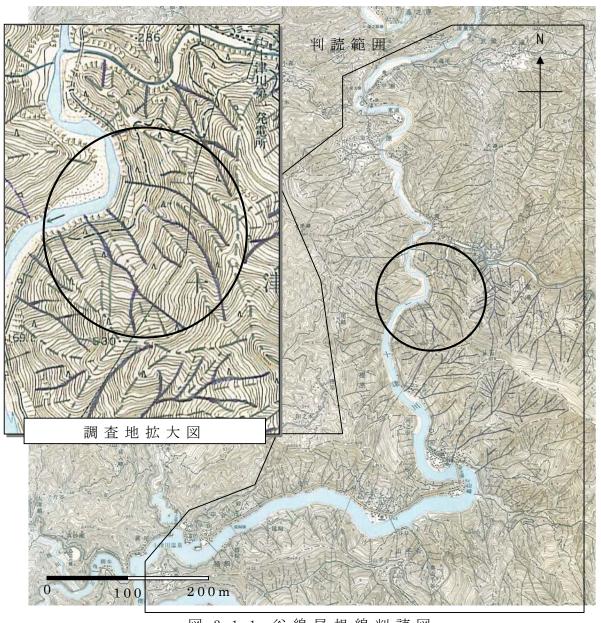


図 3.1.1 谷線尾根線判読図

- 3.2 レーザープロファイラー地形図を用いた地形判読結果
- 1)レーザープロファイラー地形図を用いた広域地形判読結果

国道 168 号周辺斜面は、新たな道路建設及び現道の維持管理にあたり、注意しなければならない地すべり箇所などの抽出を目的として、レーザープロファイラー地形図が活用されている。

図 3.2.1 に、レーザープロファイラー地形図を用いた調査地周辺地形判読結果を示す。折立地区周辺における地形の特徴は、以下のとおりである。

- ①折立地区は、十津川の攻撃斜面に位置する。
- ②斜面形は、凹状谷地形を呈する。
- ③ 斜面途中で谷の消失が認められる(C)。
- ④ 北北東から南南西の直線上の急崖地形が分布する(D)。また、急崖地形の谷側には、緩斜面が分布する。
- ⑤ 南北方向、北北西から南南東方向の溝状地形が分布する。(E1・E2)。溝状地形 E1 は E2 に比較して溝の幅が広く、より明瞭である。また、E1、E2の溝状地形に調和的な南北方向に卓越する線状地形が分布する(E3,E4,E5)。
- ⑥ 南北方向の溝状地形に調和的な南北方向の沢地形が発達する (F1~F4)。
- ⑦ 折立地区地すべり斜面 G は、緩斜面と急崖地形が列状に分布し、 遷急線を形成する。遷急線の方向は北北西から南南東方向が卓越する。この方向は、E の線状地形の卓越方向と調和的である。
- ⑧ 沢 H の左岸斜面は、馬蹄形状の急崖地形とその前面に緩斜面が 分布する。緩斜面は等高線の乱れが認められる。

折 立 地 区 における地 すべり地 特 有 の微 地 形 は、表 3.2.1 のとおり抽 出 で きる。これらの地 すべり微 地 形 要 素 から、折 立 地 区 は、地 すべり地 形 として 抽 出 することができる。

表 3.2.1 折立地区における地すべり微地形要素

地 すべり地 形 要 素	記事
沢の消失(D)	地 すべり移 動 により谷 が消 失 したことが推 定 され る。
側 部 の沢 へ連 続 する 直線上の急崖とその直 下の緩斜面(D)	直線上の急崖は、側部の沢へ連続しており、地すべりブロック頭部と推定される。
直線状の溝状地形 (E1, E2)	地すべり頭部の陥没地形と推定される。
緩斜面と急崖地形が列状に分布(G)	地すべり変動による段差地形と推定される。

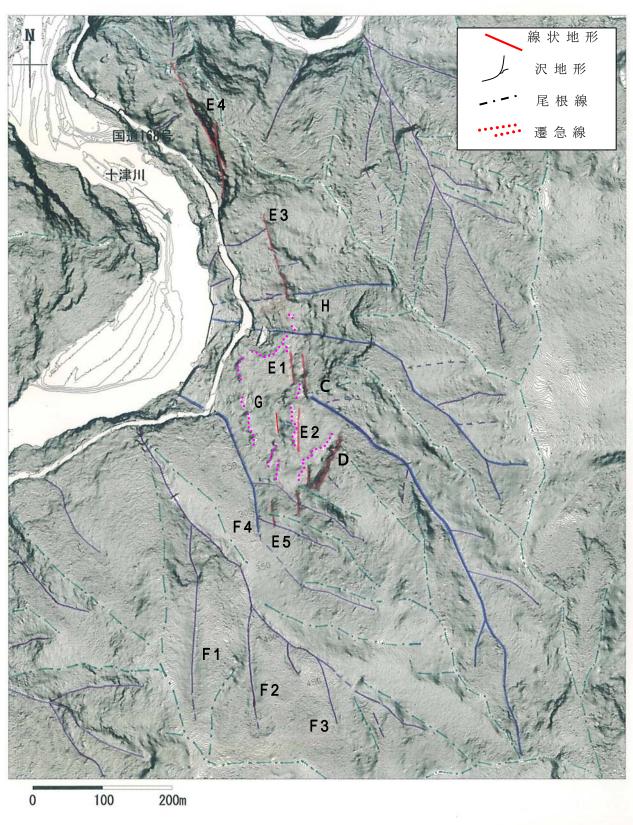


図 3.2.1 折立地区周辺地形判読図 (平成 17 年 5 月 10 日計測レーザープロファイラー地形図)

2)撮影時期の異なるレーザープロファイラー地形図の比較

レーザープロファイラー地 形 図 は、撮 影 時 期 の差 異、すなわち、植 生 の影響 で地 表 データの取 得 に差 異 が生じることがある。折 立 地 区 における以 下 の二 時 期 のレーザープロファイラー地 形 図 を示 す。

- ① 図 3.2.2 平成 17 年 5 月 10 日計測レーザープロファイラー地形図 (撮影機関:朝日航洋株式会社)
- ② 図 3.2.3 平成 18 年 2 月 27 日計測レーザープロファイラー地形図 (撮影機関:朝日航洋株式会社)

全体的に見ると、2月に撮影したレーザープロファイラー地形図のほうが、 等高線がなめらかである。これは、2月に撮影したレーザープロファイラー地 形図のほうが、5月に撮影したものに比べて、植生による影響が少なかった ためといえる。

また、二時期を比較すると、2月に撮影したレーザープロファイラー地形図のほうが、線状地形がより明確で、この線状地形が陥没帯であることも表現されている。

3) 地 すべりブロックの抽 出

図 3.2.4 に地形判読により抽出した地すべりブロック図を示す。主測線方向は、主滑落崖の方向を考慮し、設定した。なお、最終的なブロック形状は、現地踏査結果(3章)を踏まえ設定した。

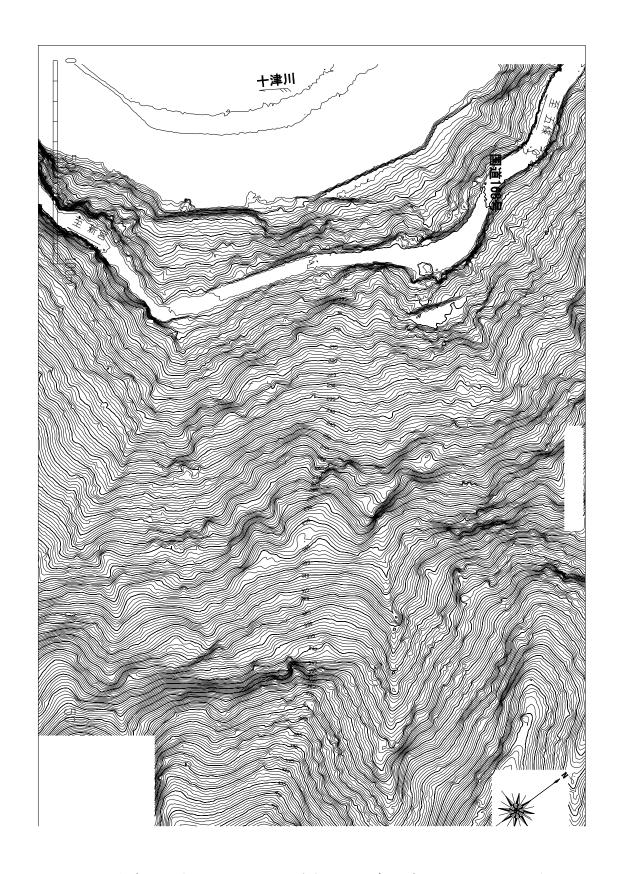


図 3.2.2 平成 17 年 5 月 10 日計測レーザープロファイラー地形図 (撮影機関:朝日航洋株式会社)

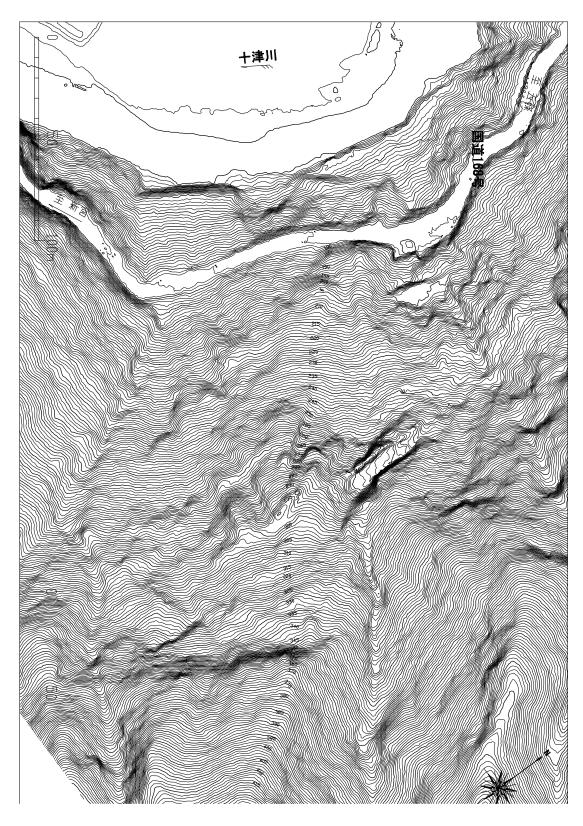


図 3.2.3 平成 18 年 2 月 27 日計測レーザープロファイラー地形図 (撮影機関:朝日航洋株式会社)

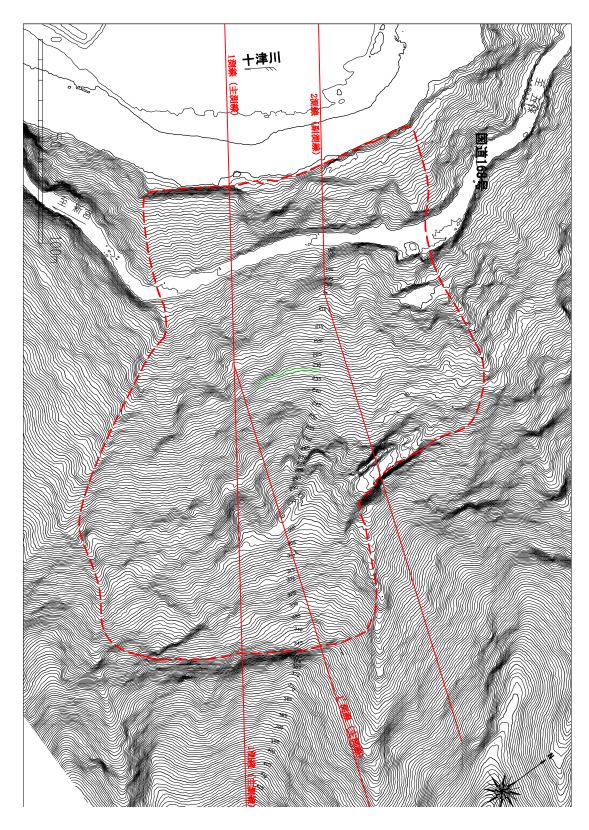


図 3.2.4 地形判読により抽出した地すべりブロック図

4. 現地踏査結果

1) 地 すべりブロックの状況

現地踏査結果平面図を図 4.1.1 に示す。現地踏査写真は文末に添付する。地すべりブロックの状況は、以下のとおりである。

■主滑落崖

- 高低差約 10~15mの急崖地形(写真 2,3)が連続する。
- ・ 滑落崖直下には緩斜面が分布する(S-3 地盤伸縮計を設置箇所)。
- 頭部滑落崖直下に分布する緩斜面(写真 4)。
- ■ブロック頭 部付 近の陥没帯
- 陥没帯から南側に、陥没帯が分布する(写真 5,6)。陥没帯の幅は約2~3m、高低差約5mで、後述する北側の陥没帯に比較して規模は小さい。
- ■主滑落崖から沢をはさみ北側へ連続する滑落崖と陥没帯
- ・ 高低差約 10mの滑落崖の全面に、幅約 10mの陥没帯が形成されている(写真 7,8,9)。
- ・ 陥 没 帯 の谷 側 に、平 行して小 規 模 な陥 没 帯 が形 成 されている(写 真 11,12)。
- 陥没帯南側の沢地形。沢から陥没帯へ沢水が流入する(写真 10)。
 現在、沢から陥没帯へ漂流水が直接流入しないように、管渠を設置している。
- ・ 陥没帯北側背後の沢地形。沢地形は不明瞭になり、沢水は伏流する(写真 18)。

■北側のブロック境界

- ・ 陥 没 帯 から北 側 部 方 向 には、斜 面 崩 壊 が生 じている(写 真 13,14)と ともに、岩 盤 に開 口 亀 裂(写 真 15,16)が認 められる。
- 北側のブロック境界は、沢地形を呈する。沢地形部で表流水はなく、 レキ混じり土砂状の崩土が分布する(写真 19)。
- 国道 168 号沿いでは、堰堤や擁壁に亀裂が生じている(写真 20,21,22)。

■南側のブロック境界

- ・ 渓 岸 崩 壊 が認 められる。上 流 側 渓 床 には頁 岩 が露 岩 する(写 真 23)。
- ・ ブロック南 サイドの渓 岸 沿 いでは、渓 岸 崩 壊 (写 真 24)が生じていると ともに、岩 盤 のゆるみが認 められる(写 真 26)。

- ・ 南 サイド付 近 では、崩 壊 が生じている(写 真 27,28,29)。
- 国道 168 号付近では、擁壁に亀裂が生じている(写真 31)

■ブロック末端

- ・ 十津川沿いの護岸工に水平亀裂が連続する(写真 32,34)。また、 護岸の倒壊が認められる(写真 33)。
- ・ 十津川は河床堆積物が厚く堆積する(十津川はV字形の深い渓谷であったが、明治22年水害で広い河原の河川へと変貌)。

2) 地 すべり規 模

折立地区地すべりの規模は、以下のとおり推定される。

- 幅:約 160m
- · 長さ(奥行き):約 220m
- 最大層厚:約 65m(別途ボーリング調査、動態観測結果による)
- ・ 地 すべり分 類:風化岩 すべり

5. 折立地すべりの地形的特徴

折立地区地すべりの地形的な特徴は、以下のとおりである。

- ① 地 すべりブロックの輪郭は、概ね直線状の微地形要素で構成されている。
- ② 特に、滑落崖は直線状で、側部の沢へと連続する。
- ③ 幅約 10m、高低差約 10mという、大規模な直線状の陥没帯が形成されている。
- ④ ブロック南側の境界は、概ね沢で規制されている。一方、北側のブロック境界は、深い沢→陥没帯→沢へとほぼ直角に連続する。

直線状の微地形要素は、北北西から南南東方向の地質構造や、南北方向に卓越する線状地形と調和的である。このことから、折立地区地すべりブロック形状は、地質構造に規制され、形成されたと推定される。折立地区地すべりの発生には、地質構造的な素因が密接に関与しているといえる。

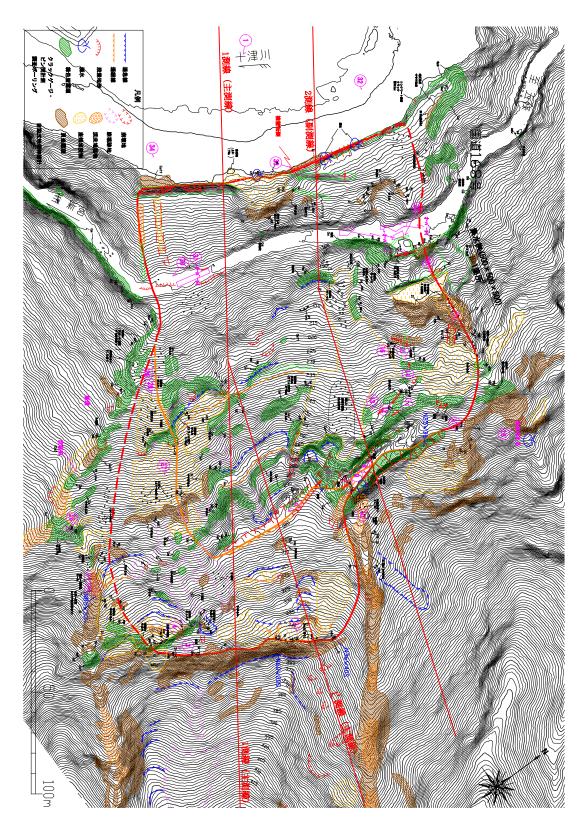


図 4.1.1 現地踏査結果平面図

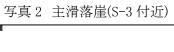


写真 7 岩盤の亀裂状況

写真 8 頭部の陥没帯(北方向を撮影。 地盤伸縮計 S-1 付近)

写真 10 沢部の状況

写真 13 陥没帯前面の崩壊によって 堆積した崖錐堆積物。

写真 14 崩壊状況



写真 18 ブロック北側の沢の状況。ポールより上部は沢となっているが、ポール位置で湧水消える。

子兵 19 七側の八地が。朋工が刀和 9 る。

写真 20 擁壁の亀裂

写真 21 堰堤に発生した亀裂

写真 23 ブロック南サイドの沢地形。 渓床に頁岩が分布する。

写真 25 ブロック南側の沢部渓床に緑色岩が露岩する。

写真 26 ブロック南サイド沢部にみられる岩盤の緩み。
亀裂が開口している。

写真 31 擁壁に発生した開口亀裂

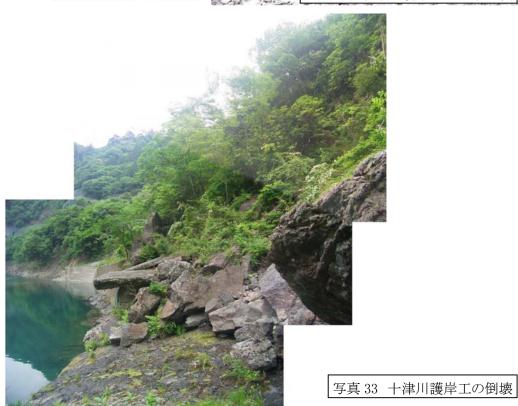


写真 34 十津川護岸工の亀裂

6. おわりに

折立地区地すべりは、直線状の明瞭な陥没帯を有するなど、非常に興味深い地形的な特徴を有する。今後も引き続き地形、地質的な観点から地すべり機構の解明に取り組んでいきたい。なお、折立地区におけるボーリング調査結果、地すべり変動状況については、別稿である「折立地区地すべりの変動状況と機構」に紹介されているので、参照願いたい。

引用文献

奈良県土木部砂防課(2006): 奈良の砂防

安井広之・杉浦敏彦・酒井信介 (2008): 奈良県の地すべり, 斜面防災技術 Vol.35,NO.1 (103 号),p3~p12 日本の地質「近畿地方」編集委員会 (1987): 日本の地質 6 近畿地方

「話題提供]

折立地区地すべりの変動状況と機構

上村良則(奈良県五條土木事務所工務第二課)

山口巌、古山貴久(日本工営株式会社)

1. はじめに

国道 168 号は、和歌山県新宮市を起点とし、奈良県十津川村、五條市を経て大阪府枚方市に至る総延長約 170kmの幹線道路である。

本路線は、紀伊半島を南北に縦貫する道路であり、半島内陸部と沿岸部を結ぶ長距離移動・輸送経路として、広域ネットワークの役割を担っている。また、生活中心都市である五條市及び新宮市とその間の市町村を結ぶ生活道路としての機能も有しており、とりわけ山間部の住民にとっては重要な路線である。しかし、道路状況は急峻な地形条件のためすれ違い不能区間、急カーブ区間が連続し、さらに崩土・落石等による通行止めが多く、地域の生活に度々支障をきたしている。

本稿でとりあげる折立地区地すべりは、奈良県吉野郡十津 川村折立地区に位置し、平成17年から地すべり調査を開始し、 計器観測を継続している。

図 1.1 折立地区地すべり位置図

1.1調査の経緯

折立地区における調査経緯について、以下に示す。

日時	記事
平成9年1月	ストンガード及 び擁 壁、谷 止 工 の 亀 裂 (幅 3 c m)を確 認。
平成 15 年 2 月	ストンガード及 び擁 壁、谷 止 工 の 亀 裂 が 4cm 拡 大。
平成 17年 4月	ストンガード及び擁壁、谷止工の 亀裂に明確な拡大傾向(4cm)。 斜面上部に滑落崖、中腹に陥 没帯などの地すべり変状を確認。
平成 17 年 5 月	地盤伸縮計設置、観測開始。
平成 17 年 7 月	ボーリング調査開始。順次孔内傾斜計・パイプ歪計観測開始。
平成 18年 3~5月	抑制工として、横ボーリング工及び表流水排除工を施工。
平成 19 年 1 月	表流水排除工を増設。

1.2調查数量

折立地区における調査数量について、以下に示す。

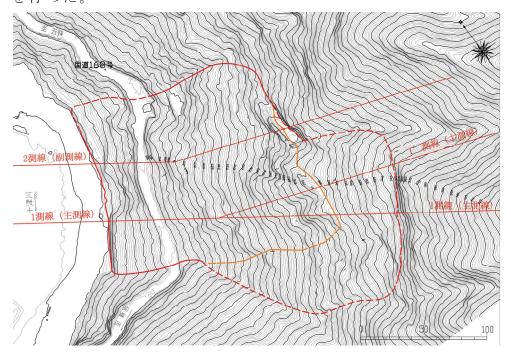
表 1.1 調查数量一覧

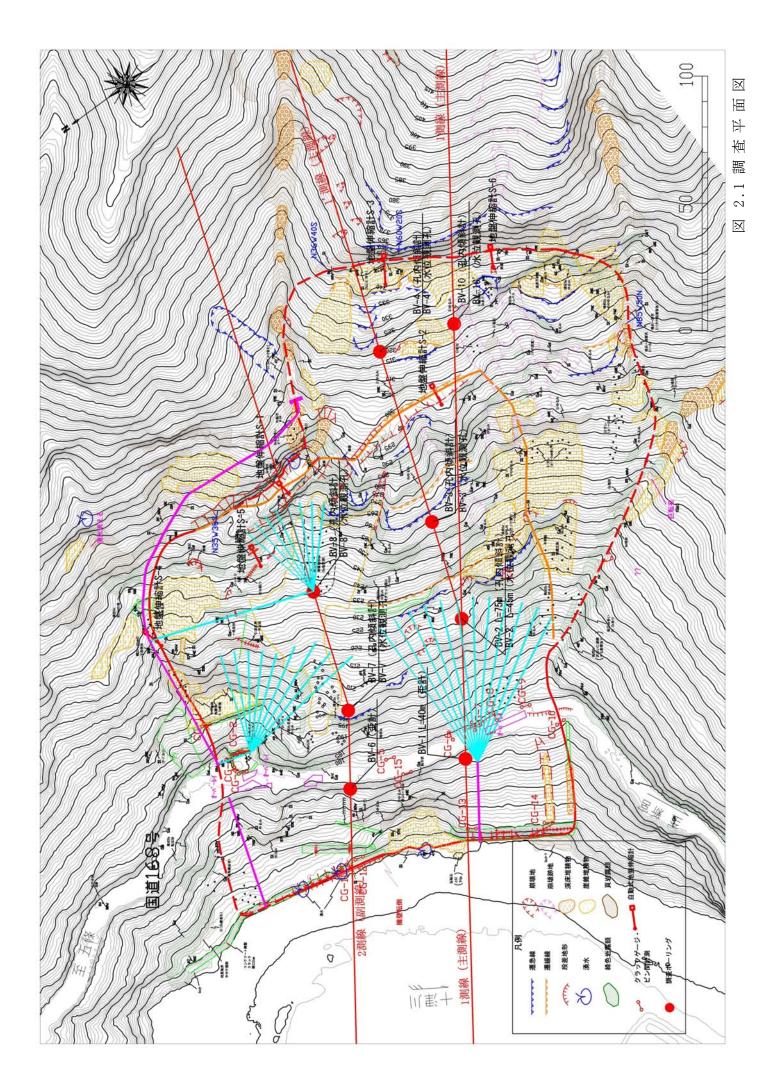
種別	計器番号	標高(m)	· 深度(m)	備考	
12//4	S-1	- N() Int (111)	-	地すべり頭部陥没帯	
地盤伸縮計	S-2	_	_	地すべり頭部陥没帯	
	S-3	_	_	滑落崖部	
	S-4	_	_	地すべり左側部	
	S-5	_	_	地すべり左側部陥没帯前面亀裂	
	S-6	_	_	滑落崖部	
	BV-1	171.155	40	_	
. ° >°- =1	BV-6	166.753	35	_	
パイプ歪計	BV-8	242.178	28	-	
	BV-10	319.981	37	-	
	BV-2	221.416	75	-	
71 由何의.	BV-3	258.79	85	-	
孔内傾斜計	BV-4	317.731	110	-	
	BV-7	204.537	55	-	
	BV-1	171.155	40	1測線末端部	
	BV-2'	-	_	1測線中腹部	
	BV-3'	-	_	1測線中腹部	
	BV-4'	_	-	1'測線頭部	
地下水観測孔	BV-6	166.753	35	2測線末端部	
	BV-7'	_	-	2測線中腹部	
	BV-8'	_	-	2測線頭部	
	BV-8(歪)	242.178	28	2測線中腹部	
	BV-10(歪)	319.981	37	2測線頭部	
	CG-1	_	_	谷止工に設置	
	CG-2	_	_		
	CG-3	_	_		
クラックゲージ	CG-4	_	_	1	
	CG-5	_	_	道路構造物に設置	
	CG-6	_	_	追究特別がに以 自	
	CG-7	_	_		
	CG-8	-	-		
	CG-10	_	-		
	CG-11	-	_	1	
	CG-12	_	-	河床付近擁壁に設置	
	CG-13	_	-		
	CG-14	-	-		
	CG-15	-	_	道路構造物に設置	

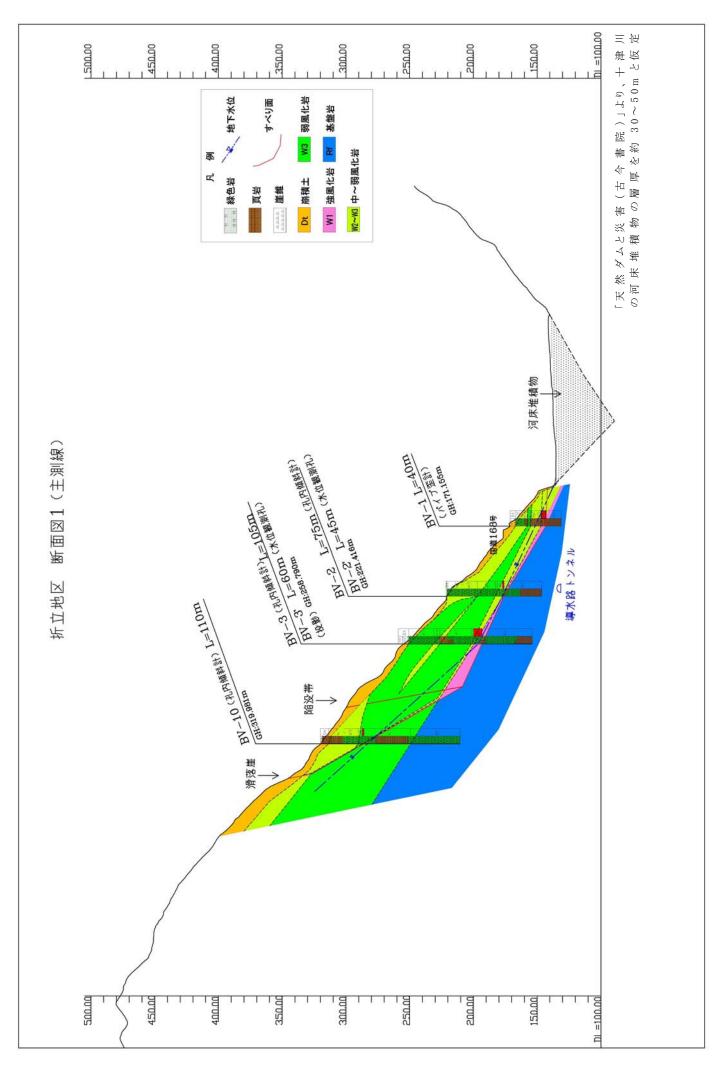
1.3解析測線の設定

地 すべり解析側線は、下記の理由により、図 1.2 のとおり 設定した。

- 地 すべりの中 腹 ~ 末端 部 の活 動 方 向 は、地 形 コンターから道 路 にほぼ直 角 方 向 に活 動 しているものと推 定 できる。
- 頭部滑落崖に着目すると、道路とほぼ平行に延びていることより、地すべりの移動方向は地すべりの中腹~末端部の活動方向とほぼ一致している。
- ・ 陥 没 帯 は道 路 方 向 と斜 交 しており、陥 没 帯 に着 目 した場合 の移 動 方 向 は、地 すべりの中 腹 ~末 端 部 の活 動 方 向 に 比 べ、下 流 方 向 となる。
- ・上記を勘案し、主測線については地すべりの平面形状が最も長くなる1測線とし、滑落崖を頭部とするブロックを解析する目的で1測線、陥没帯を頭部とするブロックを解析する目的で1消線を設けた。1,測線は中腹~末端部については1測線と共有し、BV-2の位置で陥没帯にほぼ直交するように折り曲げた。また1,測線の陥没帯より五條側の陥没帯の規模が大きく、活動性やその機構が異なっている可能性が考えられたため、副測線として2測線を設け、あわせて解析を行った。




図 1.2 折立地区平面図


2. ボーリング調 査 結 果

調 査 地 におけるボーリング調 査 概 要 について以 下 に示 す。またコア写 真 、 柱 状 図 を文 末 に添 付 する。

表 2.1 調査ボーリング概要一覧

孔番	孔口標高 (m)	削 孔 径 (mm)	掘 進 長 (m)	概 要
BV-1	171.155	φ86	40.00	 ・深度27.90m以浅は、D~CL級岩盤とCM~CH級岩盤が交互に分布しており、全体に渡り縦亀裂が発達し、表面及び割れ目には風化が認められる。 ・深度27.90m以深は、堅硬な岩盤が認められる。 ・上記調査結果より、すべり面は深度27.9mと推定した。 ・地下水は、GL-20.0m付近を推移しており、すべり面より上位に存在する。
B V - 2	221.416	φ86	75.00	 ・深度 45.25m以 浅 は、D~CL級 岩 盤とCM~CH級岩 盤 が交 互 に分 布しており、全 体 に渡り縦 亀 裂 が発達し、表 面 及 び割 れ目 には風 化 が認 められる。 ・深度 45.25m以 深 は、堅 硬 な岩 盤 が認 められる。 ・上記調査結果より、すべり面は深度 45.25mと推定した。 ・地下水は、約 GL-44.0mに存在し、すべり面近傍に存在する。
BV-3	258.790	φ86	85.00	 ・深度 65.53m以浅は、D~CL級岩盤とCM~CH級岩盤が交互に分布しており、全体に渡り縦亀裂が発達し、表面及び割れ目には風化が認められる。また、空洞(開口亀裂)も多々認められる。 ・深度 65.53m以深は、堅硬な岩盤が認められる。 ・上記調査結果より、すべり面は深度 65.53mと推定した。 ・地下水は、約GL-63.3mに存在し、すべり面近傍に存在する。
BV-6	166.753	φ86	35.00	 ・深度19.45m以浅は、D~CL級岩盤とCM~CH級岩盤が交互に分布しており、全体に渡り縦亀裂が発達し、表面及び割れ目には風化が認められる。 ・深度19.45m以深は、堅硬な岩盤が認められる。 ・上記調査結果より、すべり面は深度19.45mと推定した。 ・地下水は、平常時はGL-19.0mに存在し、すべり面近傍に存在する。降水との相関は顕著であり、豪雨時には7m程度の水位上昇が認められる。
BV-7	204.537	φ86	55.00	 ・深度 49.50m以浅は、D~CL級岩盤とCM~CH級岩盤が交互に分布しており、全体に渡り縦亀裂が発達し、表面及び割れ目には風化が認められる。また、空洞(開口亀裂)も多々認められる。 ・深度 49.50m以深は、堅硬な岩盤が認められる。 ・上記調査結果より、すべり面は深度 49.50mと推定した。 ・地下水は、平常時はGL-46.5mに存在し、すべり面近傍に存在する。降水との相関は顕著であり、豪雨時には6m程度の水位上昇が認められる。

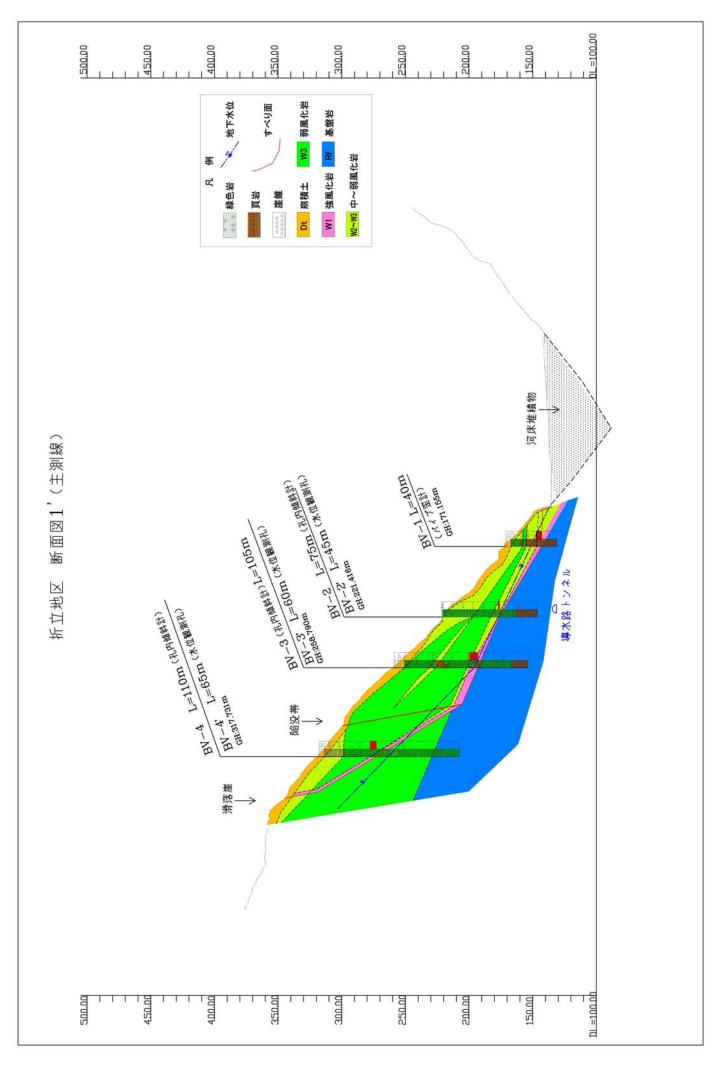


図 2.4 調査断面図(測線 2)

3. 地 すべり計器 観測 結果

当地区に発生した地すべりの規模や活動の機構、特性等を把握する目的で、地すべりブロックの地中および地表の変動を各種計器によって観測が実施されている。図 3.1 に観測計器位置図、表 3.1 に観測計器一覧を示す。

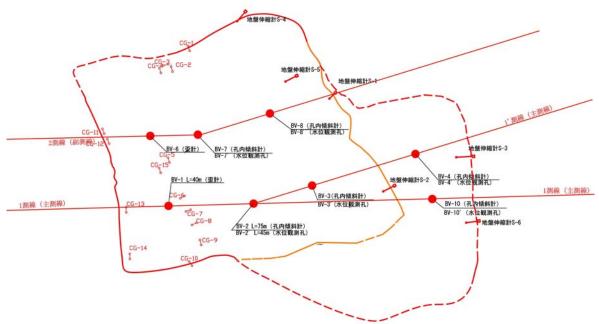


図 3.1 観測計器位置図

表 3 1 観測計器一覧

	表 3.1	観 側 i	計器一			
種別	計器番号	標高(m)	深度(m)	備考		
地盤伸縮計	S-1	_	ı	地すべり頭部陥没帯		
	S-2	-	-	地すべり頭部陥没帯		
	S-3	-	ı	滑落崖部		
地盆門州山	S-4	-	ı	地すべり左側部		
	S-5	_	ı	地すべり左側部陥没帯前面亀裂		
	S-6	_	ı	滑落崖部		
	BV-1	171.155	40	_		
パイプ歪計	BV-6	166.753	35	_		
/ 竹ノ正町	BV-8	242.178	28	_		
	BV-10	319.981	37	_		
	BV-2	221.416	75	_		
孔内傾斜計	BV-3	258.79	85	_		
7日7119(赤行司	BV-4	317.731	110	_		
	BV-7	204.537	55	_		
	BV-1	171.155	40	1測線末端部		
	BV-2'	ı	ı	1測線中腹部		
	BV-3'	ı	ı	1測線中腹部		
	BV-4'	-	I	1'測線頭部		
地下水観測孔	BV-6	166.753	35	2測線末端部		
	BV-7'	-	ı	2測線中腹部		
	BV-8'	ı	ı	2測線頭部		
	BV-8(歪)	242.178	28	2測線中腹部		
	BV-10(歪)	319.981	37	2測線頭部		
	CG-1	_	-	谷止工に設置		
	CG-2	-	-			
	CG-3	_	-			
クラックゲージ	CG-4	_	-			
	CG-5	_	ı	道路構造物に設置		
	CG-6	_	ı	退的得 見物に取 匪		
	CG-7	_	ı			
	CG-8	_	ı			
	CG-10	_	ı			
	CG-11	-	ı			
	CG-12	_	ı	河床付近擁壁に設置		
	CG-13	_				
	CG-14	-	_			
	CG-15	-	_	道路構造物に設置		

3.1地盤伸縮計観測結果

頭部滑落崖に設置したS-3,6では、顕著な引張変動が認められ、降水との相関性も高い。陥没帯に設置したS-1では、若干の引張変動、S-2では圧縮変動が認められる。陥没帯前面に設置したS-5でも、S-1と同様に若干の引張変動が認められる。

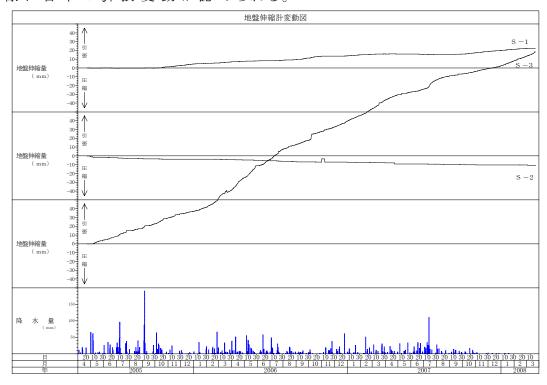


図 3.2 地盤伸縮計観測グラフ

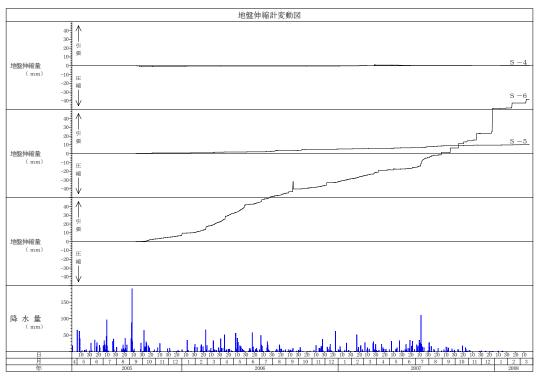
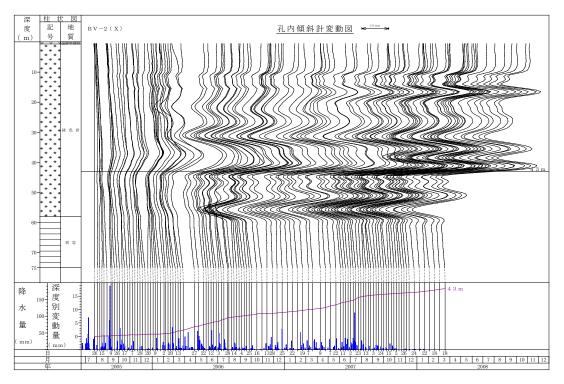



図 3.3 地盤伸縮計観測グラフ

3.2孔内傾斜計観測結果

孔内傾斜計観測においては、各孔のすべり面付近で緩慢ではあるが継続した変動が認められる。

すべり面 $45.25\,\mathrm{m}$

すべり面 65.53m

図 3.4 孔内傾斜計観測グラフ

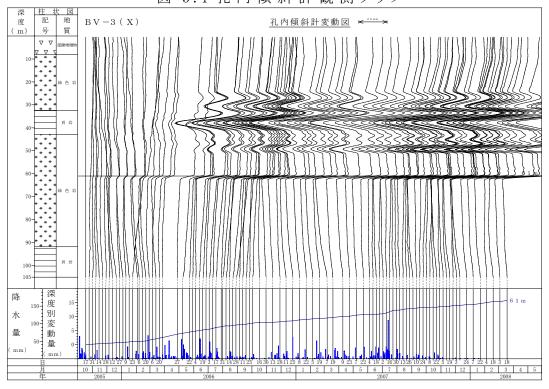


図 3.5 孔内傾斜計観測グラフ

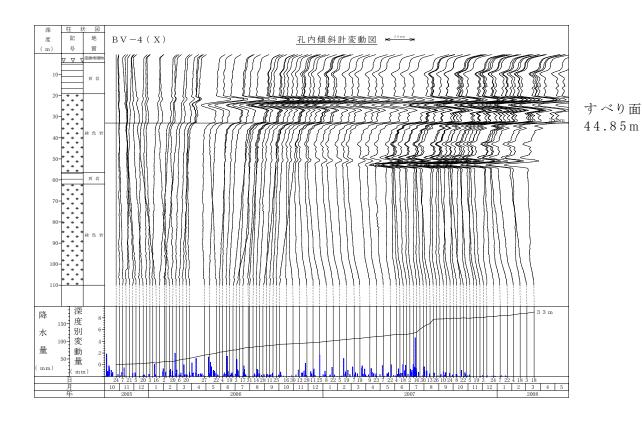


図 3.6 孔内傾斜計観測グラフ

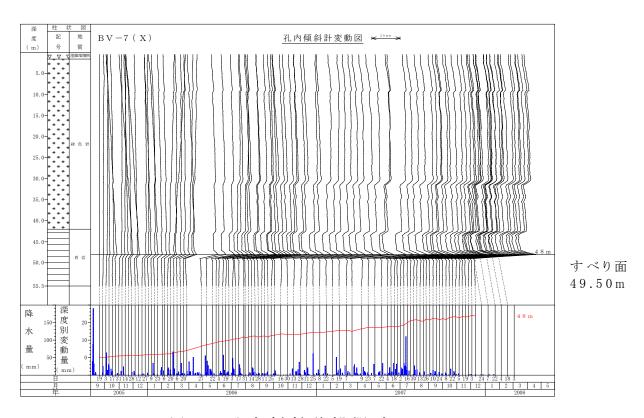


図 3.7 孔内傾斜計観測グラフ

3. 3パイプ 歪 計 観 測 結 果

パイプ歪計観測においては、各孔のすべり面付近で緩慢ではあるが継続した変動が認められる。

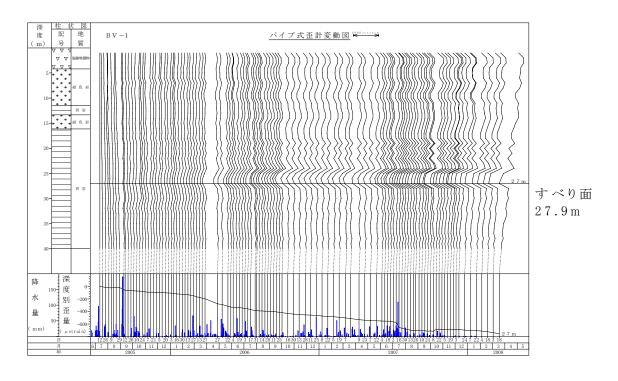


図 3.8 パイプ 歪 計 観 測 グラフ

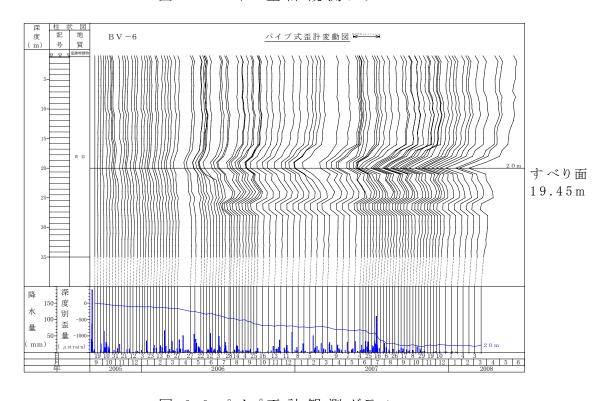


図 3.9 パイプ 歪 計 観 測 グラフ

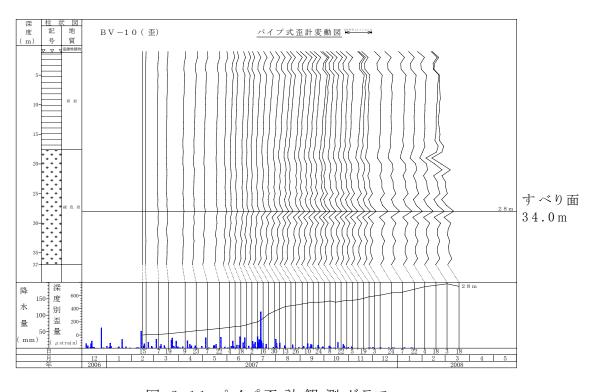


図 3.11 パイプ 歪 計 観 測 グラフ

3. 4クラックゲージ観 測 結 果

クラックゲージは、道路構造物及び河川構造物の亀裂変状の進行を 把握する目的で設置している。観測の結果、全体的に亀裂変状は開 口している傾向が認められる。

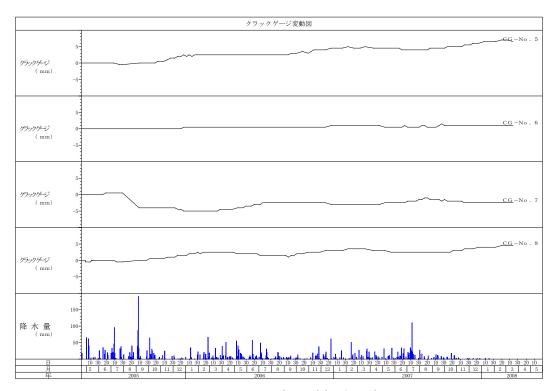
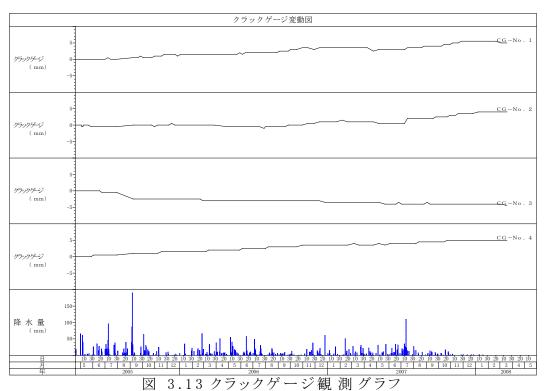



図 3.12 クラックゲージ観測グラフ

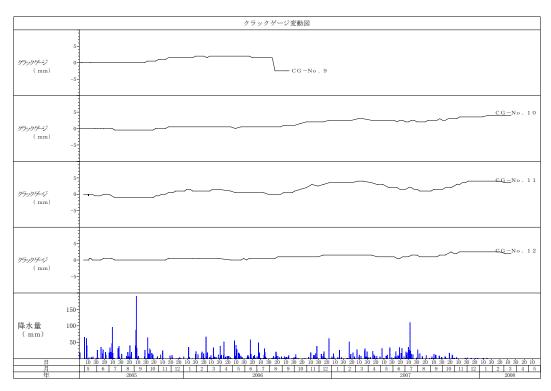
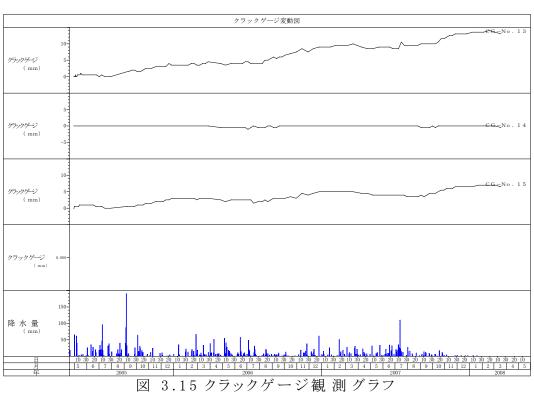



図 3.14 クラックゲージ観 測 グラフ

3.5地下水位観測結果

地下水位観測の結果、副測線のBv-6,7',8'については、他の孔と比較して、降水と強い相関関係があり、水位変動幅は最大15mと大きい。これは陥没帯上部の沢から流入する地表水の影響が強いためと考える。その他の孔については、降水との相関は認められるが、変動幅は小さい。

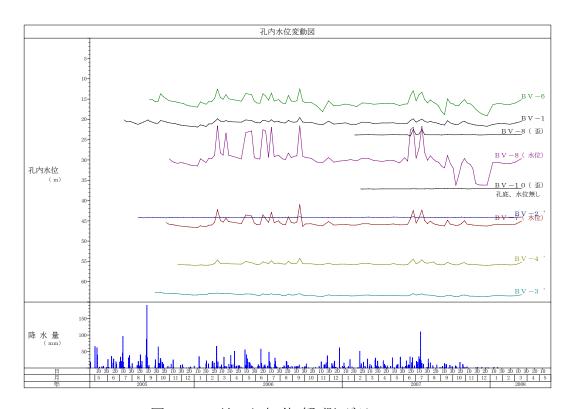


図 3.16 地下水位観測グラフ

3.6考察

1) すべり面

計器変動状況及びボーリングコア観察結果より、すべり面の判定を行った。いずれの計器も、地質的弱層で地すべり変動が認められた。表3.2にすべり面深度一覧を示す。

表 3.2 すべり面 深度 一覧

孔番	孔口標高 (m)	掘進長 (m)	観測計 器	掘進長 (m)	変動状況	コア状況	すべり面 判定深度
BV-1	171.155	40.00	パイプ 歪計	40.00	深度27.0mで、 累積性の変動 が認められる。 降水により、若 干加速する傾 向も認められ る。	・ 深度27.90m以浅は、D~CL 級岩盤とCM~CH級岩盤が 交互に分布しており、全体 に渡り縦亀裂が発達し、表面及び割れ目には風化が認められる。 ・ 深度27.90m以深は、堅硬な岩盤が認められる。	27.90m
BV-2	221.416	75.00	孔 内 傾斜計	75.00	 深度43.0mで、 累積性の変動 が認められる。 降水により、若 干加速する傾 向も認められる。 	・ 深度45.25m以浅は、D~CL 級岩盤とCM~CH級岩盤が 交互に分布しており、全体 に渡り縦亀裂が発達し、表 面及び割れ目には風化が認められる。 ・ 深度45.25m以深は、堅硬な岩盤が認められる。	45.25m
BV-3	258.790	85.00	孔 内 傾斜計	85.00	・ 深度61.0mで、 累積性の変動 が認められる。 降水により、若 干加速する傾 向も認められ る。	・ 深度65.53m以浅は、D~CL 級岩盤とCM~CH級岩盤が 交互に分布しており、全体 に渡り縦亀裂が発達し、表 面及び割れ目には風化が認められる。また、空洞(開口 亀裂)も多々認められる。・ 深度65.53m以深は、堅硬な岩盤が認められる。	65.53m
BV-6	166.753	35.00	パイプ 歪計	35.00	 深度43.0mで、 累積性の変動 が認められる。 降水により、若 干加速する傾 向も認められ る。 	・ 深度19.45m以浅は、D~CL 級岩盤とCM~CH級岩盤が交互に分布しており、全体に渡り縦亀裂が発達し、表面及び割れ目には風化が認められる。 ・ 深度19.45m以深は、堅硬な岩盤が認められる。	19.45m
BV-7	204.537	55.00	孔 内 傾斜計	55.00	 深度48.0mで、 累積性の変動 が認められる。 降水により、若 干加速する傾 向も認められ る。 	・ 深度49.50m以浅は、D~CL 級岩盤とCM~CH級岩盤が 交互に分布しており、全体 に渡り縦亀裂が発達し、表面及び割れ目には風化が認められる。また、空洞(開口亀裂)も多々認められる。・ 深度49.50m以深は、堅硬な岩盤が認められる。	49.50m

2) 変動状況

当地区地すべりの変動状況について、その特徴を以下に述べる。また各種計器の観測結果の相関性を把握するため、総括変動図を作成した。図3.18に示す。

- パイプ歪計・孔内傾斜計では、すべり面付近の深度で、緩慢に継続した変動が認められる。
- ・ 陥 没 帯 に設 置 した 地 盤 伸 縮 計 S-1,2 は、頭 部 滑 落 崖 に設 置 した S-3,S-6 と変 動 形 態 が異 なり、S-1 で緩 慢 な引 張 変 動、S-2 で軽 微 な圧 縮 変 動 が認 められる。
- 頭部滑落崖に設置した地盤伸縮計 S-3,S-6 は、顕著な引張変動が認められる。変動は豪雨時に活発化する傾向がある。
- 地盤伸縮計 S-3 と、パイプ歪計 BV-8,10 等の変動傾向が同一であり、ブロック全体が一体となって変動していると考えられる。ただし北側の陥没帯の変位は、相対的に小さい。
- ・ 頭部滑落崖に設置した地盤伸縮計によると、過去 3 年間の変動量は約 $220\,\mathrm{mm}$ であり、地すべりの年変動量は約 $7\,\mathrm{cm}$ /年である。
- 孔内傾斜計の変位量をみると、約2年半で約50mmの区間変位であり、 年変位に換算すると約2cm/年の変位が認められる。
- 折立地区地すべりの年変位量は、年間数 cm のオーダーといえる。

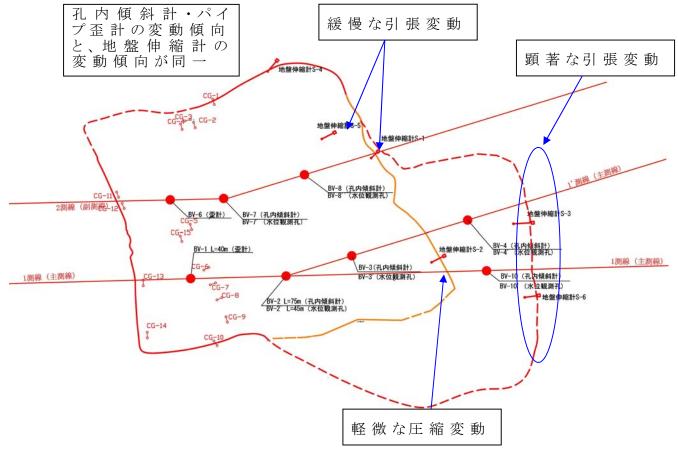
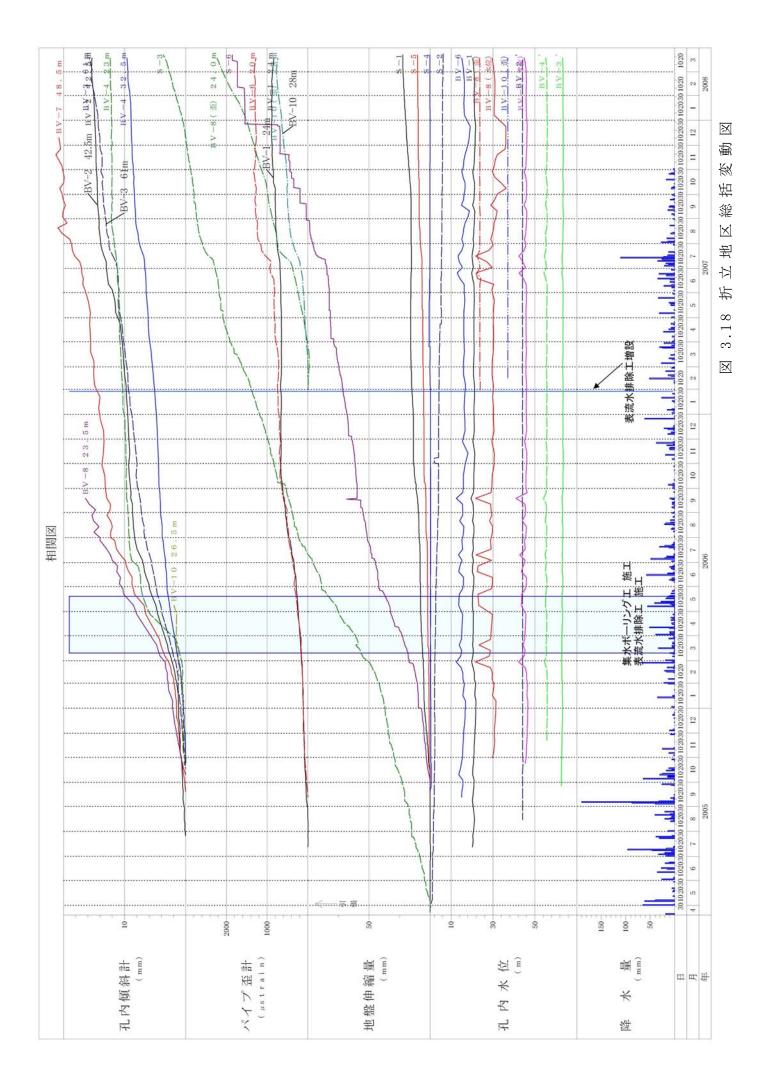



図 3.17 折立地区計器変動の特徴

4. 地 すべり機 構

当地区地すべりの素因・誘因、発生機構については、以下のように推定される。

1) 地 すべり規 模

幅	約 160 m
長さ(奥行き)	約 220 m
最大層厚	約 65 m

2) 地 すべり機 構

①地すべり分類

当地区地すべりは風化岩すべりに属する。

②構成岩盤

移動層は崩積土、崖錐堆積物、緑色岩、頁岩からなる構成であり、不動層(基盤岩)は頁岩である。

③移動状況

頭部滑落崖に設置した地盤伸縮計によると、過去 3 年間の変動量は約 220mm であり、地すべりの年変動量は約 7cm/年である。また、孔内傾斜計の変位量をみると、約 2 年半で約 50mm の区間変位であり、年変位に換算すると約 2cm/年の変位が認められる。

以上より、折立地区地すべりの年変位量は、年間数 cm のオーダーといえる。

④素因

地質的素因としては、南北系かつ垂直の節理が卓越している緑色岩が調査地に広く分布していることが挙げられる。また、河川の水衝部(攻撃斜面)であることも挙げられる。

⑤ 誘 因

当地区地すべりの誘因としては、以下の点が挙げられる。

- ① 陥 没 帯 に流 れ込 む沢 水、集 中 豪 雨 によるすべり面 付 近 の間 隙 水 圧 の上 昇
- ②河川の浸食による末端荷重の減少
- ③地 すべり末端崩壊による末端荷重の減少

⑤すべり面形状及び深度

当地区地すべりは椅子型すべりを呈し、すべり面は弱風化層下面に分布する強風化層に存在している。各ボーリング孔のすべり面深度は以下の通りである。

⑥解析測線

地 すべりブロック全体 については、地形コンターより国道に垂直方向に移動していると推定し、測線を設定した。(1測線)

陥 没 帯 を頭 部 とするブロックについては、陥 没 帯 の方 向 が国 道 に 斜 行 していることを考 慮 し、BV-2 からやや北 向 に屈 曲 していると設 定 し、中 腹 より下 部 については 1 測 線 と同 様 の方 向 とした。(1, 2) 測 線)

5. おわりに

本稿では折立地区地すべりの変動状況と機構について述べたが、今後の課題としては、地すべり計器観測の継続が挙げられる。平成 17 年度より、地すべり計器観測を実施しているが、今後も地すべり活動を監視するため、各種地すべり計器(孔内傾斜計・パイプ歪計・地下水位・地盤伸縮計・クラックゲージ)等について、計器観測を継続して行うことが必要である。

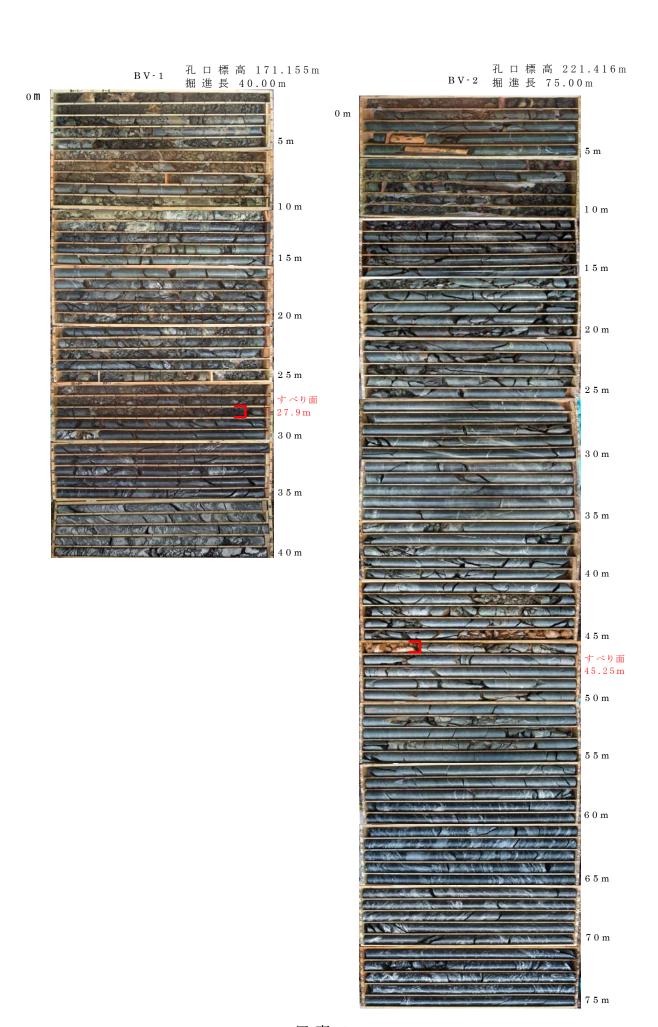


写真 1

BV-3 孔口標高 258.790m 掘進長 85.00m

BV-3

写真 2

すべり面 65,53m

 $70 \mathrm{m}$

孔口標高 166.753m BV-7 孔口標高 204.537m BV-6 掘進長 35.00m 掘 進 長 55.00m 0m Om 5m 5m 10m 10m 15m 15m 19.45m 20m 20m 25m 25m30m 30m 35m 35m 40m 45m すべり面 49.50m 50m

写真 3

55m

調 査 名 道災701-委-2号 災害復旧関連調査委託

<u>p</u> /-		古及山内庄	<u> </u>		ボーリン	グNo.
<u></u>	<u>業・工事名</u>				シー	- } No.
ボーリング名	BV-1	調査位置	奈良県十津川村折立	立地内		北 緯 。 '"
発 注 機 関	五條土木事務所工務三課			調査期間	平成17年6月27日~平成17年7月11日	東 経 。 , "
調査業者名	株式会社 インテコ 0742-30-5655	主任技師	島井 亮	現 場 代 理 人	中村 孝幸 コ ア	ボーリン グ責任者 川崎 栄司
孔口標高	GH= 171.48m 角 180° 方 270	11 0 90 塩	世 40° 使 用 数 10° 以	試錐機	├-ホ-DO-C	
総 掘 進 長	40.00m 度 下 向 西	90 鬼	日 置 図 機 種	エンジン	ヤツマ-NF-8 ポンプヤツマ-	-NFAD-6

標 標 深 住 岩 色 硬 コ 割風変 れ	水 水 量 (一//
R R R R R R R R R R	水 水 址 量 (I / / / / / / / / / / / / / / / / / /
R Q D E m	E 量 量 (I / / / mMPa 分 分)
R Q D S 別定	m MPa 分分
(m) (m) (m) 図 分 調 軟状態化質 事	
日 1 日 2 日 2 日 2 日 3 日 3 日 3 日 4 日 5 日 5 日 5 日 5 日 5 日 5 日 5 日 5 日 5	0 0 0 0
10~50mm程度の亜角酸を主体とする。基 10~50mm程度の亜角酸を主体とする。 公 △ △ △ △ △ △ △ △ △ △ △ △ △ ※ 10~50mm程度の亜角酸を主体とする。 10~10	0 0 0
□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	0 0 0 0
E 4 167.28 4.20 / \(\)\(\)\(\)\(\)\(\)\(\)\(\)\(\)\(\)\(\	1 1 10 15
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 10 10
5	
[7	
D IV d	
B	0 2 8 8
# 1	
E 11 159.98 11.50 **** 緑色岩 灰 D V d d δ μωβ~気体中心たたス 40 2 1:	0 2 7 7=
12 C III C 7 GL-11.9~12.35m間は礫状となり、破砕質	
E. VI. d. t. 5-30cm程度の柱状コア主体。	0 2 8 8:
E 14 D C C C V D D D D D D D D D	- Inner
砂質で一部単粒 ラージの画像の柱状コアを主体とする。 電影面の傾斜は、緩和25~35 位で酸化	
E- 1.5	
E	0 2 8 8
- 17	
F	
E	
E 22 I I I I I I I I I I I I I I I I I	
D V c o C1-23.4m付近65° 程度の鏡則を示す亀	
	0 2 10 10=
146.73 24.75 50	0 2 10 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
V d (31-24.6~24.7cmln, 工学化学 o.fv. 看着	1 1 1 3

調 査 名 道災701-委-2号 災害復旧関連調査委託

部	<u> </u>	《害復旧関連調査委託	ボーリン	ØNo.
<u>事</u>	<u>「業・工事名</u>		シー	No.
ボーリング名	BV-1	調査位置 奈良県十津川村折	立地内	北 緯 。 '"
発 注 機 関	五條土木事務所工務三課		調査期間 平成17年6月27日~平成17年7月11日	東 経 。 '"
調査業者名	株式会社 インテコ 0742-30-5655	主任技師 島井 亮	現 場 代 理 人 中村 孝幸	ボーリン グ責任者 川崎 栄司
孔口標高	GH= 171.48m	北 0 地 40 使 90 盤 鉛水平0 用	試 錐 機 DO-C	
総掘進長	40.00m 度 下 ₀ 向 西	() ★ 左 接 W 上 機	エンジン ヤンマーNF-8 ポンプ ヤンマー	·NFAD-6

10	総	掘	進	長	40.00m	度	0°	\bigvee_{0}	· [f	i M	180	南	配配	90°	<u>></u>		種	エ	ンジ	ン	ヤンマー	NF-	8							ポン	ノフ	プヤン	7-N	FAL)-6							_
R Q D K	標	標	深	柱	岩	色	硬コ	割風	変			記							27			() 🖺	式験	原位				掘	進	, t	犬	況		
R Q D R R R R R R R R R					種		P									最力	大コ	アま	級		水位		()	図	置試験 (試		進	径	アチ	_		水	水	水
10 10 10 10 10 10 10 10	尺	高	度	状	区											R	. Q	D	区		測														_	/ 孔	ーブ			.	_ .	_
□ 1	(m)	(m)	(m)	図	分	調			質)			分		月) 値	0]	10	20	3()	40	50	60		_	日		保	ッ	MPa —	rpm	MPa	分 一	´分
	26					1	V S D III	d S c δ	GL:	乗〜短柱は -24.75〜2 4	状コアヨ 25.50ml	主体。 間、5~1	10cm程度	の短		ı) (16)	(10	0) <u>CL</u>	_																						
	27						CIII SS DIV	c s	を GL: GL: と	きする。 -25m付近 -25.75~2 トる。	i、チャー 26.40m	一ト挟む。間、岩片	状~砂	楽状を	1	0 11	01	(10	₩	_														7				,				
	28	143. 5	27. 90		頁岩											0	H	(10	oř _D	_	7/6		-												75				100	2	-8	8
	29						IV S C III	сγ	10~ GL· 境易	貝石// -30cm程 -29.2m以 -29.0~29 	度のコ 浅の亀 9.2m間 斜角は	。 アを主体 L裂面は間 はチャー 60° くらい	とする。 酸化され -トを挟む ハで、境	る。 P。 界面		18		(10	CM		28. 70 ▼																					-
	30								は美	意肌を呈す	广る。					25	Ħ	dic	(88)				ŀ																			-
	31															27		(10	1 7				ŀ							-						86mm						-
	32															16		[6]	I																	ケーミ	D C					-
	33															18		(57)					ŀ							+				75			В					-
	34															27	Щ	ſ6	11×				ŀ																			-
	35															24		(10																								-
	36															27	#	(10	(96))																						-
	37															32	-	(10																								-
									GL:	-39.5m以	深、チー	ヤートを打	夹む。			26		(10	[86] 0)																			2				-
	E	131. 48	40.00		頁岩	黒灰	B S C II	bβ		かいふいも	CHU/ALP.	,,,,,,,				14		(10	(4) (6) (CH															Z 6	60	66m	n	3	300	2	10	
	41															#			ļ																							
	42															#		\pm	ļ																							-
44 45 46 47 48 49	43															#	Ϊ	Ŧ	Ħ				ŀ							_												
- 45 - 46 - 47 - 48 - 49 - 50	44															+	H	Ŧ	Ħ				-																			-
- 46 - 47 - 48 - 49 - 50	45															$\frac{1}{1}$							ŀ																			-
- 47 - 48 - 49 - 50	46																\parallel						}							+												-
48	47															#	\parallel	H	H				-							+												-
	48															#							ŀ																			-
	49															#	H	H	Ħ				l							+												-
	50															#	H		Ħ				f																			-

株式会社 インテコ

調 査 名 道災701-委3 一般国道168号 災害復旧関連調査委託

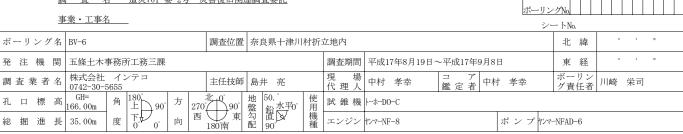
ボーリングNo.

				事	業	· _	事	名										W.					
ボー	- リン	グ名			ВV	- 2				1	周査位置		奈良県十津	川村	折立	地内			北		ż	33° 57	, 59"
H.,		幾 関				- 奈	良り	県 五	. 條		木 事 務 所	調	直期間 平成				17年 7	月 291		紐	-	1 3 5 ° 4	
		者名		株式		: 7	1 ス				主任技師 足立 潔	現	場場が	本 考		コア		孝之	ボー	-リンク	ř		敬貴
-	-	票高	GH=	1	3	80°	- 2 1	_	ケ	1	上 0° 地 使		注理 人 位 ^企			鑑定者		- K R 1		任者	f		
		生 長	75.00n	n	-	<u>+</u> }	90	Ι.	. 7	:70°	90°盤 水平0°用 機		ンジン	ヤン	/ マー	-NF90		ンプ			ンマ	- C P 6	5
					度 ()° '	0°	-	句	180	o°'南 配 90°' 30° 種												
標	標	深	柱	岩	色	硬	コ	割	風	変	記		コア採取率 岩	内	ı —	(標準 (N値~深度) 図	貫入)診	験		原位	室内計	掘進	
				種			ア	れ 目					最大コア長級			(14) 14(50) 12	N			置試験		進径ア	合回送送排 転水水水 E 服圧量量
尺	高	度	状	区			形	n					cm R Q D ⊠	(m) /	, IN								- 数 ~ ~ /
							1/10	状					[%]	定月							F		i rpm mi 分分
(m)	(m)	(m)	図	分砂	調暗	軟	状	態	化	質	事 薬 は ϕ 0.3~6cmの緑色岩の角礫から		0 50 100 分	7 目	値	N値 0 10	20 30	40 5	50 60	~	~ F	護卜、	
E	220.	83 0.6		礫	褐		IV				岩片状〜角礫状コアからなる。 多数の亀裂が発達し、亀裂を褐色の	4	0									195 C 1.	
	219			緑	暗 緑 褐	С	v.	с	γ	2	多数の亀裂が発達し、亀裂を褐色の 流入砂質粘土が充填する。 岩片は硬い。		000 CI									150	
	2 219	48 2.0		色岩		B A	IV II			1	岩片状コアで、全体に褐色を帯びる。 短柱状~長柱状コアを主体とする。 亀	1		M								86	
F :	3 218 218	38 3.1 18 3.3	3000	\	暗緑	∂ B	III	Ь	β	2	裂面は暗褐色化している。岩片は硬質である。褐色・黄緑の細脈がみられる。							_			3	0	
Ē.	4 217.	28 4.2		空洞緑	暗	A					約20cmの空洞 長柱状コアからなる。 亀裂面は暗褐色	4	- F K 26F F F K (100) 4	Н								75	
Ē.	216			色 岩 空洞	緑	B	II	ь	β	1	化しているが、岩片は硬質である。 黄緑や白色の細脈が多数存在する。 約30cの空洞	1	- F F 32 F F F (100)									71 116	
E	215.	68 5.8			暗緑	A ≀ B	II	ь	β	1	長柱状コアからなる。亀裂面は暗褐色化しているが、岩片はほぼ新鮮で便		(33) CI	Н							1	86 1	
E	215		222		赤褐~黄	С	IV	c	γ	2	質である。 黄緑と白色の細脈多数あり。 岩片状〜角礫状コアからなる。 コアは 赤褐色あるいは黄緑色に変質してい	1	CI	L							1	109 y	
F .	7 214.	38 7.1			緑暗	В	V	ь	β	1	る。	1		M									
Ė,	213	68 7.8			緑	С	IV.	\vdash	γ		が、岩片は硬い。 岩片状~角礫状コアからなる。 コアの三分の1程は、赤褐色に変質し	1	-	L								100	
E					赤	L	v		_		ているが、岩片は硬い。	1										100	
	9				褐 ~ 🛚	C ¿	V	c	δ	2	主に角礫状コアからなり、部分的に岩 片状コアを伴う。 コアは全体的に赤褐色に変質してい		00 (100)	Η							1	109	
10	211.	18 10.3			暗緑						るが、個々の岩片・角礫は硬い。 岩片状からなる。 亀裂面は暗褐色化し		(FFFFFFFFFF								3		
1	210	68 10.8				С			γ		ているが、岩片は硬い。コアの四分の 1ほどは、赤褐色に変質している。			4							1	86	
1:	2				暗緑		IV		β	1	主に岩片状コアからなり、部分的に長柱状コアを含む。コアの半分ほどは黄緑に変質しているが、岩片は硬い		- r r 26] - r r r(100) - r r 26] - r r r(100)	и									
E					黄	В			γ	2	緑に変質しているが、岩片は硬い。 亀裂面は暗褐色化している。 GL-13.00~-13.20m間の亀裂付近は			VI									
1		08 13.4			緑			Ь			角礫状になっている。 長柱状〜短柱状コアからなる。	-	-									80	
1	1					A ≀ B			β		亀裂面は暗褐色化しているが、岩片は硬質である。 GL-1495m付近に砂状コアがみられ		CI	Н								, 75	
1	206		^.^.^!!!!!!!!!				IV	ь			出方状~角礫状コアである。	+	CI	L							(
10		507 10.4			暗緑	С	V V	c c	γ	1	個々の岩片・角礫は硬質である。	4										80	
E	204	48 17.0			New	В	III ≀				短柱状〜岩片状コアである。 亀裂面は暗褐色化しているが、岩片 は硬い。		C! - 1,15- L - L - L (10b)	M									
1	203					A	II				短柱状~長柱状コアである。	1	C) 151 C) 152	Н								75	
18	3					B	III				亀製面は暗褐色化しているが、岩片 は非常に硬い。						++	+					
19	9												[12] - h					+					
20											短柱状〜岩片状コアからなる。 亀裂面は暗褐色化している。		[17] [17]									86	
E					暗				β		岩片は比較的硬質である。 GL-1785m付近は砂状化している。											80	
2	1				緑 ?	В	III			1	GL-1920~-20.00mのコアは四分の1 ほど赤褐色化している。			M									
2	2				赤褐		IV			2	GL-2120m付近に淡赤褐色のレンズ		111111111111111111111111111111111111111					+			4	75	
2:	3										状の挟みがある。 GL-22.90m付近は、傾斜約15°の層												
E.											構造が明瞭である。		(E) (10b) 4 									71	
F 2	*		1,7,7,4 111111		1		1	1	1	1					1 [1		\perp	\perp \perp \perp \perp

25				ĺ								-
26											75	
27											7 71 71 8	adameter
28											75 75 75 75 75 75 75 75 75 75 75 75 75 7	dimention
29										主に棒状〜長柱状コアからなる。 GL-2555〜-2750m間は一本の棒状 コアである。 コアは非常に硬質である。	75 75 67 67 67 67 67 67 67 67 67 67 67 67 67	The state of the s
31							ь			亀裂面は暗褐色化している。 GL-27.85~-28.15m間とGL-36.80~- 37.30m間は、岩片状コアである。		handanad
32			緑色岩		A ≀ B	II .		α ? β		コアには多数の黄緑色の脈が入っている。 黄緑色の脈沿いに出来た亀裂が多い。		1
33										GL-37.15m付近に約50°の傾斜を示す 中亀裂があり、その亀裂面に条線が みられる。条線の方向は傾斜方向と一 致するが、逆断層センスである。		-
34										GL-37.30m付近、厚さ1cm程度の淡緑 色の粘土を挟む。	86 86 86 86 86 86 86 86 86 86 86 86 86 8	The state of
35				緑					1			- Transfer
36											100 100 100 100 100 100 100 100 100 100	arter at a
37												danaalaa
38	182.98	38.50										0
39		39.60			В	IV				岩片状コアを主体とし、一部に短柱状 コアを含む。	100 100 100 11 (897) (199) (1	International
40	101100				A	II				主に長柱状〜短柱状コアからなる。 亀裂面は暗褐色化しているが、岩片 は硬質である。	1 100 1 100 1 1 1 1 1	4
41	179.98	41.50			В	III		β		GL-40.15m付近に厚さ約2cmの黄緑 色化帯がみられる。 主に短柱状〜岩片状コアからなる。		The state of the s
42						III				亀裂面は暗褐〜褐色化している。 GL-4150〜41.70m間は、角礫状コアである。		The state of the s
43					В	IV				GL-4220~-4230m間は石英脈が密 集している。	100 100 100 100	nelennelen
44	176.98	44.50		atts	С	IV			2	GL-42.30~-42.80m間は、暗黄緑化しており、多数の滞在亀裂がみられる。 岩片状コアと粘土質砂状コアからなる。 コアは全体に黄褐色化しており、芯部	4	4
45	176.23 175.58	222		黄褐	D	VI	с	δ	3	は淡黄色である。GL-4525mでの亀 裂の傾斜は約25°である。		The state of the s
47				暗黄緑	В	III ≀ IV	ь	β		岩片状〜短柱状コアである。コアは全体に暗黄緑色化している。 亀裂面は褐〜暗褐色化している。	1	-
48									1	長柱状〜短柱状コアを主体とし、岩片 状コアを伴う。	7 80 12 12 12 12 12 12 12 12 12 12 12 12 12	and the same
49					A ≀	II	a /	α /		色製面は褐色化しているが、岩片は 硬い。 GL-46.50~-47.35m間は、淡褐灰色に	- 1-1	and an article
50				暗緑	В	III	b	β		変質している。 GL-48.40~-48.85m間は縦亀裂が入		- Transfer
51	170.38	51.10								っている。 岩片状コアを主体とする。 亀 裂面は褐	7/16 7/15 86 7/15 86 7/15 86 7/15 7	dunida
52	169.68				A A	IV	ь	β	1	色化し、亀裂面付近は角礫状化している。 主に長柱状コアからなる。 亀裂面の褐色化は極わずかで岩片は硬い。	7/15 51,80 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	To the second
53	168.78			暗黄	В	IV			1 ?	岩片状コアを主体とする。コアは全体 的に暗黄緑色に変質しているが、岩 片は硬い。 亀裂面は褐色化し、 亀裂面		Transferred .
54	167.68	53.80 (^^^		緑						付近は角礫状化している。		and and
55				már	A			α		主に長柱状コアからなる。 亀裂面の褐色化は極わずかとなる。	100 100 100 100 100 100 100 100 100 100	The state of the s
56				暗緑	B	II	a	β	1	岩片は硬質である。 各所で白色の石英脈がみられ、GL-5 7.80~-57.90m間に石英脈が集中して いる。		and the second
57	100.40										100	4
58	163.43	58.05										The state of the s
60												The state of the s
61											7 86	and the same
62										棒状~長柱状コアを主体とする。	86	minimum
63										様式 を在れ フを主体とする。 最大82cmのコアが採取されている。 層理の傾斜は30~60°である。 亀裂は層理に沿ったものが多い。 コアは硬く、ほぼ新鮮である。	86 86 86 86 86 86 86 86 86 86 86 86 86 8	attenue
64					A	I		α		厚さ0.5~5cmの灰色細粒砂岩を頻繁 に挟む。	FT (\$7 (5 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	atamatan
65					B	II >	a	β		GL-58.35~-58.40m付近に珪長質擬 灰岩の挟みがみられる。 GL-61.00mまでは亀裂面の褐色化が		de la constanta de la constant
66			頁	暗					,	極わずかに認められる。 GL-61.00m以深は、亀裂面の褐色化 がみられない。	86 86 86 86 86 86 86 86 86 86 86 86 86 8	Transferred.
I- I	-		岩	灰	I	1	1 1	- 1	•	GI68.00~-68.20m間は岩片状コア	- 「TYTFT TRR	1

67 68 69 70 71 150.38 71.10 150.08 71.40	· · · · · · · · · · · · · · · · · · ·	GL-61.00m以深は、亀裂面の褐色化がみられない。 GL-68.00~-68.20m間は岩片状コアからなる。 岩片状~角礫状コアからなる。 亀製面付近は角礫状~砂状化している。		80 80 7 86 15 86
73	-	主に棒状〜長柱状ニアからなる。 コアは新鮮・硬質である。 長径05~10cmのレンズ状・塊状の細 粒砂岩を頻繁に含む。 GL-7180m付近に厚さ約2cmの角礫 化帯がある。 GL-7230~-7250m間はレンズ状砂	CH	92
75 146.48 75.00 76 77		岩が密集している。		18 90
78				

調 査 名 道災701-委1一般国道 168号 災害復旧関連調査委託


ボーリングNo.

				3	事業	€ .	I i	事名						
ボー	リン・	グ名			В	V -	3				調査位置	吉野郡十津川村折立 地内 北 緯		
発	注機	関				奈	良	県	五個	条 土	: 木 事 務 所	查期間 平成 17年 7月 30日 ~ 17年 9月 11日 東 経		
調査	正業	1 名	株式:		シー 話(0							場 中村 高志 コ ア 中村 高志 ボーリング 責 任 者 中	村	巌
孔	口標	高	259.2		角	180° 上	L	90°	方	270°	北 0 地 使	錐 機 カノー K R 1 0 0		
総:	掘進	長	105.0)0m	度	下 [下	7)°	向	西	90° 盤 新来り。 用 数 数 数 数 数 機 面 90° 45° 種	ンジン ヤンマーNFD10 ポンプ トップNI	3 5	
標	標	深	柱	岩	色	石面	コ	割	圃	恋	 記	コア採取率岩 孔 (ルジオン 標準貫入)試験原室 掘	進壮	犬 況
IZK	125	IV.	114	70		I NO.		れ	/134	×.	pu	→ (%)	1	可送送排
尺	高	度	状	種			ア	目				最大コア長 級	ラチュ 圧	医水水水 数圧量量
			- "	区			形	の状					J WPar	1 1
(m)	(m)	(m)	図	分	調	軟	状	態	化	質	事	-	헤끼 [分分
	258.93	0.30	2222		暗緑灰	B?	V ≀	c ·			岩片状コア主体。一部、礫状。 地表面より岩盤露出。	27 (10) CL 15 0.15 (18,32/5)	28	8 8
1						С	IV	d			10次回より石運路四。	(59) (59) (50) (50)	Н	
2					暗						棒状〜岩片状コア主体。一部、礫状コア を呈す。	[21] (100)4 50 2,00 (50)		
3					緑灰、		П				を呈す。 便質。 亀裂面付近はハンマーで簡単に 割れる中硬質も認められる。 GL-Im貫入試験、高角度の開口亀裂に沿	CM (100)4	32	
			^^^^		暗赤		IV				って貫入。 GL-1.8m付近、赤色百岩層を挟む。	418 (32) (100)4		10 0
E *					褐				γ		GL-2m付近、亀製面開口し流入粘土多い。 GL-4m付近まで、亀製面に流入粘土、草根 入る。	21 (100)4 (100)4 (100)4		
5	253.73	5.50					V			-		30 (100) (100) 2	40	
6	253.13	6.10			暗		V				岩片状~礫状コア主体。岩片は硬質。 亀裂面に流入粘土挟む。	18 100	Н	
7					緑灰		III				短柱状〜岩片状コア主体。硬質。 GL-17.5m付近は岩片状〜礫状コアを呈す。	[45] NOOT	32	
8	251.18	8.05					IV				コア肌はややザラザラしている。全体 に赤褐色を帯びている。 赤色頁岩を薄層で不規則に挟む。	77 71 (100)4	₹ 40	
			^^* ^^^^									(CH CH	Ш	
					暗	В					棒状〜短柱状コア主体。一部、岩片状コアを呈す。	20 (75)(100)-		
F 10					緑灰、						硬質。 10~30°傾斜する層構造が認められる。層構造に沿って亀裂が入るものは、	- 420 (65) (100)4		6 0
<u> </u>			^^^^ ^^^^		暗赤						亀裂面が比較的シャープである。 GL-8m、GL-9.5m付近は石灰質であり、溶 け出しいるように見える。	20 noneCM		
12					褐		П				全体に亀裂面が密着していないものが 多い。	[Fe] [Te]	30 ? 45	
13	245.83	13.40					III		β			[27] (300) (27) (CL CM		
14	240.00	13.40						ь	y	•		\$\frac{25}{100} \left[(82) \frac{100}{100} \right]\$		
			^^^^		暗						棒状コア〜短柱状コア主体。	CH 03 (80)		
15					緑灰						10~45°傾斜する層構造が認められる。傾斜に沿って赤褐色脈や紫褐色脈を挟む。	63 (cto)	П	
E 16												7 CH 555 (100)4		
17	242.43	16.80	*^*^* ^^^^		暗緑		III			-	短柱状〜岩片状コア主体。硬質。 GL-17.5m付近は岩片状〜礫状コアを呈	[80] [7] [43] [400)CM		
18	241.23	18.00			灰帝褐		IV				9。 コア肌はややザラザラしている。全体 に赤褐色を帯びている。	(35) (100)		
19				緑						-	赤色頁岩を薄層で不規則に挟む。	19 (83)000 CH		
			^^^^	色岩							棒状コア〜短柱状コア主体。 細粒で硬質〜極硬質。ハンマーの打撃	26 (65) (100) EX		
20											神経になり、「極い点。ハン・パイチで金属音。コア肌ややツルツル。 亀製面は密着している所がやや多い。 一部、若干酸化し褐色化。	31 (500)CH	45	
21					暗	A		a			GL-19.8m付近は角礫状コア主体、若干、 粘土湿 λ	42		
22					緑灰	∂ B	II	b }			GL-19.6~20.1m間は黄緑灰の脈が30~45 © 傾斜で多く入る。 GL-20.45mの亀裂面は45°傾斜し、亀裂 の上下で薄層の食い違いが認められる。	176) CH		
23							III		β		の上下で薄層の良い遅いが認められる。 厚さ0.5mm程度の粘土は固結している。 過去にこの亀裂面が動いた可能性があ ス	1		
E 24											る。 GL−23~25m間は黄緑灰の脈が不規則に 多く入る。	(82) (190)4 (182)		
ll din	234.13	25.10										13) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1		8 0
= 25		20.10			暗緑灰~			h			棒状〜短柱状コア主体。硬質 コア肌はややザラザラしている。	(be) cloop CM		0.1
26	232.68	26.55			暗灰	В		D			亀裂面は褐色化し薄く粘土を挟む。	CH 533 (199)	H	
27	231.78	27.56			暗緑 灰暗赤			b ?	β		短柱状〜岩片状コア主体。 亀裂面は酸化し褐色化。亀裂面周辺は 風化している。	(67) CM	E0.	
Ė.		07.00]^ <u>,</u> ^ <u>,</u> ^[褐	I	IV	С	γ		岩片は硬質。	 	1 [30]	1113

27	231.78	27.58 27.59		暗灰暗褐		III ≀ IV	b ≀	β ?	短柱状〜岩片状コア主体。 亀裂面は酸化し褐色化。亀裂面周辺は 風化している。 岩片は硬質。	13 361 COD CM	50		
28	231.33 230.73	27.90 \^^^ 28.50 \^^^		茶褐色	D ? E	V → VII	d	ε	破砕帯。厚さは5cm程度。含水中位。 粘土混じり角礫状を呈す。粘土主体部 分は1cm以下。 55°傾斜する。破砕帯の上下は比較的	120			
30	229.43	29.80 29.80 29.80		暗緑	В	III ~	b ?	β	聖く境界がシャープである。 短柱状〜岩片状コア主体。 亀製面、酸化し褐色。	CM (10) (100)4 D		180	
31	228.53	30.70		灰暗	С	IV	С	γ	破砕帯。 GL-27.9~28.1m間は角礫状~粘土混じり	(3) (100)4 (10) (10) (10) (10) (10) (10) (10) (10)	42		1
32	226.83	32.40		緑褐~5	C ₹ E	V VII	d	δ ? ε	角礫状コア。 GL-28.5m間は粘土混じり角礫状〜 角礫混じり粘土状コア。 粘土主体部分は2〜5cm程度。含水やや 多く、軟弱である。	16 (100)4CL	42		1
33	226.03 225.23	33.20		褐暗	В	III	b		下端のGL-28.5m付近の傾斜は20°で赤 梱色化している。 短柱状〜岩片状コア主体。	S CM S CM S S S S S S S S S			1
34	220.20	= \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\		緑灰	c	IV	~ c	γ	亀裂面に薄く粘土挟む。 破砕帯。	- 15 36] (100)- 8 (11			
36				緑褐~	C ? E	V VII	e ~ 1	δ	GL-29.8~30.1m間は角礫混じり粘土状~ 粘土混じり角礫状。 GL-30.1~30.7m間は角礫状~粘土混じり 角礫状。 破砕帯は70~85°の亀裂が主体で上側	25 (100)4			1
37				灰	E		d	ε	WHT は 10 - 00 小屋	**************************************	35		6 0
38				暗緑 灰~ 褐灰	- ₹	V ≀ IV	с	γ ? δ	上部の破砕帯の影響を受け亀裂が多く、 縦亀製主体。 亀製面、薄く粘土挟む。岩片もやや風化 進む。	20 80 000CM	48		0
39				暗灰~灰	B ? C	III ₹	b ∼	γ	短柱状〜岩片状コア主体。硬質。 灰色の珪質岩との接触部に優白色岩を 捕獲する。 縦亀裂がシャープに入る。	905 (57) (100)4			1
40			頁岩	暗灰暗灰		II			棒状コア主体。一部、短柱状コア。 硬質。	22 [14] (100)4 8 12			1
42			· 緑 色		В	111	ь	β ?	頁岩・緑色岩の混在部。やや泥質。 棒状〜短柱状〜岩片状コア主体。岩片 は硬質	- e18 [59] C100)4			
43	216.33	42.90 <u>*</u> ^^	岩	暗~緑~赤		II ₹ IV		γ	コア肌ややザラザラする。 片理発達弱い。所々、10~20°の傾斜で 赤色頁岩や脈を挟み層状を呈す。 亀裂は10~30°の傾斜が主体であり、	CH			1
44				20114					所々、高角度の亀裂が入る。潜在亀裂が 認められる。 亀製面は酸化している。 頁岩・緑色岩の混在部。やや緑色岩優	[53] CM			1
45	213.43	^^, 45.80 ^^,		暗緑灰、	В	III ~	b ~	β ?	勢。 極薄く頁岩が層状 (10° 前後傾斜) に 混在する部分と全体に混在するところ がある。	22 [33] (100)CH	40		8 0
47	212.13	^^ 	緑色岩	禄灰		IV	С	γ	短柱状〜岩片状コア主体。一部、棒状コアを呈す。 硬質。層境界で割れやすい。 GL-44.6m付近、頁着層が2cm程度食い違っており、そこに石英脈が貰入している。	2 (100) CM (2) (2) (2) (2) (32) (100) CM			4
48		48.20	頁岩	緑灰	B ≀ C	II	c ∼ d	β ? δ	緑色岩主体。上部との境界は30°程度。 緑地岩主体。上部との境界は30°程度。 棒状〜岩部状コア主体。	7 ³⁴ 100 CH 5.6			1
49				暗灰 ~暗灰	В	III →	b ∼	β ≀ γ	頁岩・緑色岩の混在部。やや緑色岩優勢。 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	613 (34) (100) CM			4
50	208.48	50.80							頁岩・緑色岩の混在部。全体に珪質で ある。 棒状〜短柱状コア主体。一部、岩片状コ	11 (32 C00) CM CH -017 (45) C00) CM	ダールコ		
51				暗緑灰	A ≀ C	II ₹ IV	ь	β	アを呈す。 ハンマーの打撃で金属音。緻密で堅 い。コア肌はツルツル。 GL-48.9m(サルアップ)	-018 (311 (100)4 CM	アチュー		
52	206.43	52.80	珪質						溶けており空洞化。 上部は真岩と緑色岩の五層状(20~30° は外)。層に沿って割れるとシャープ。 縦亀裂は亀製周辺が礫状コアを呈す。 開口亀裂。5cm程度	1271 (100)4	ブ / ダ イ		Harris States
54	205.93 205.79		頁岩・コ	暗緑灰	A ≀ B	II	b	β ?	棒状〜短柱状コア主体。一部、岩片状コ アを呈す。 コア肌ツルツル。硬質〜極硬質。	17	ヤ モ 40 ン / ド 45		
55			緑色岩	暗緑灰	В	III	b	β	GL-52.5m付近、石英脈が弧を描くように 高角度で密集し入る。 開口亀裂。50cm程度。 短柱状コア主体。硬質。		ピ ッ ト		8 0
56	203.33 202.63	55.90 === ^^ ^^^^^ ^^^^^		暗灰	A	III		β	開口 <u>亀裂。5cm程度。</u> 短柱状〜岩片状コア主体。 下部は珪質が強くなり、緻密で堅い。 亀 裂面は酸化し褐色化。	[11] \$ 5 19 17 (100)4			1
57	202.05 201.75	57.18 57.48		~ 淡 緑 灰	B	 IV	ь	γ	表面は最近と褐色に。	CM S (100) CL S 20			
58				淡緑灰	A	III ∼ IV	b ~ c	β ? γ	短柱状〜岩片状コア主体。岩片は概ね 堅い。 亀裂面付近、酸化しやや風化進む。やや 破砕を受けている。	7 (100) CM			1
60	199.81 199.63 199.11	59.42 ^ ^ 1 59.60		淡	A	Ш	ь	β	開口 <u>亀裂。10cm程度。</u> 短柱状〜岩片状コア主体。一部、礫状コ アを呈す。岩片は概ね堅い。	5 (100) D	30		
61				灰	ć	IV	c	γ	亀裂面付近、酸化しやや風化進む。 GL-57m付近に頁岩脈を45°程度で薄く 挟む。 開口亀裂。50cm程度。高角度の開口龟 裂。若干、礫状コア採取。	(i) (99) D 8 22 1		110	4 0
62	196.78	62.45		緑灰~	C,	V,	ь	7	緑色岩。破砕ゾーン。岩片状~礫状コ ア主体。 GL=57.48m~58.05m間は礫状~砂状コア	(i) D 5/23 13 4/90 CM	0.5	180	8 0
63	196.23 195.83 195.65	63.00 \(\hat{1}\)\(\hat{1}\)\(\hat{1}\)\(\hat{2}\)\(\hat{1}\)\(\hat{1}\)\(\hat{2}\)\(\hat{1}\)\(\hat{1}\)\(\hat{2}\)\(\hat{1}\)\(\ha		暗緑灰	E	IV	d d	} ε	を呈す。		35	50	8 0
65	194.13	65.10 \(\hat{\chi_0}\)		褐	D ? E	V VII	d	ε	破砕ゾーン。粘土混じり角礫状~礫混 じり粘土状コア。 粘土主体部分は1cm以下。褐色~赤褐 色を呈し含水はやや多い。	6 00 CM 6 00 C	30	110	2 0
66	193.63	65.60		緑灰~	C ∂ D	V ≀ IV	c ~ d	δ	角礫状〜岩片状コア主体。一部、粘土混じり角礫状。 亀裂面は褐色の粘土を挟む。岩片にも 風化が進みやや腋い。	(2) (100) D (100) CL			-
67	191.88		緑色岩	褐褐					GL-60m付近は縦亀裂が主体。 破砕ゾーン。粘土混じり角礫状~礫混 じり粘土状コアを呈す。 孔壁崩壊、スライム発生が著しく、コア	18 1000 CM 8 29	35 } 50	160 ? 170 0.0	8 0
68			40	暗緑黑	C E	V VII	a	ε	10年 日本 (1987年) 10年 11年 11年 11年 11年 11年 11年 11年 11年 11年				

68				暗緑灰	ĕ E	VII	d	ε	発収率低 5。一部、郷町分等流矢。 (は-60.2~60.3m間は粘土主体で 65~10m 配度の円~亜角線混入。 含水やや多い。 (は-60.65~60.8m間, (は-61.2~61.3m間, (6 1621.)~61.25m間は藤野じり粘土状を呈	- 22 [42] (100)	Н	1
69 70	188.58			暗緑 灰褐	B ~ D	III ∼ V		γ } ε	し。	CM - 123 (100) - 154 (100) - 155 (100)	1	170
71 72				暗灰	В	III	c ~ d	γ	<u>開口亀裂。40cm程度。</u> 短柱状〜岩片状コア。岩片は堅い。 龟 製面は開口し褐色化。	CH - 226 G00 €M CH		_
73 - 74				褐~緑褐	D ? E				破砕ゾーン。礫混じり粘土状〜粘土混 じり角礫状コアを呈す。 上部と下部は礫混じり角礫状。岩芯ま で風化しやや瞭く、やや軟質。 全体に不均質でやや汚い。土砂が流動 しているように見える。	(68) (600) CM		
75	184.98 184.63	74.60		褐灰~緑	Е	VII V	d	ε	破砕ソーン。礫混じり粘土状〜粘土混 じり角礫状を呈す。 GL-65.45〜65.53m間は礫混じり粘土状で 含水多い。下位の礫状部との境界は15 (傾斜。	11/(22) C100) CL 11/(22) C100) CM		
76 77				灰暗					明瞭な鏡肌を示す粘土化したすべり面 は認められない。 破砕され残っている礫は風化進み脆い。 岩片状へ礫状コア主体、一部、短柱状コ アを呈す。岩片は中硬質へ硬質。 上郊の部がイーンの影響で水辺〜10°		40 ≀ 55	10 0
78				灰~暗緑一	B ? C	V ≀ IV	c ~		上部の破砕ゾーンの影響で水平へ10° 程度傾斜の亀裂が主体で、薄層状に割れるが、亀製師は凹凸が目立ち、井理構造 は認められない。 縦亀裂には褐色の粘土を薄く挟む。 コア肌はザラザラでやや岩片に風化進	24 5400 CM CM 14 [48] (100)		
- 79 - 80				灰				γ	む。 GL-66.9m付近、GL-67.2m付近は10°程度 傾斜し破砕されている。 頁岩と終色岩の混在部。やや泥質。一 部、緑色岩主体部が認められる。 棒状へ短柱状コア主体。一部、岩片状コ	-019		
81				暗灰		II	b ~ c		ア呈す。 岩片は硬質。 亀裂面付近はやや脆い所 有り。 亀裂面は酸化し、黄褐色化する。 GL-69.25~69.32m間に石英脈が25°程度 傾斜で挟む。	20 (46) (100) (100) (100)		
83	176.48 176.18	82.75 83.05	頁山		В	V	ь	β ?	頁岩と緑色岩混在部。やや泥質。 棒状〜短柱状コア主体。一部、岩片状コアを呈す。 所々、緑色岩主体層を30~45°傾斜の層 状に挟む。	15 (37) (100)- CL (19 (66) (100)- CM		
84	174.08	85.15	岩・緑色岩	暗		V	c	γ	厚さ0.5mm程度の石英脈を所々挟むが、 脈状に沿って入る亀裂はシャープである。 亀裂面の酸化は若干である。 コア肌はややツルツル。 岩片状へ礫状コア主体。岩片は硬質。	34) (34) CH		
86 87	172.23	200 200 87.00		緑灰		IV	√ d	γ	亀製は30°と60°傾斜主体。亀製面酸化する。 買岩と緑色岩混在部。やや飛質。 棒状〜短柱状コア主体。一部、岩片状コ アを呈す。 岩片は硬質である。亀製面周辺の礫状	11	40 / 48	
88				暗灰	B	IV IV	b	β ? γ	コアは中硬質である。 GL-77m~79m間は石英脈は60°程度の同 一類斜で薄く挟む。 色裂面の角度も調 和的である。 GL-75.6m付近、GL-76.35m付近、GL-78.2m 付近は硬状コア主体でやや破砕状。粘			180
89 89 90				~ 暗緑灰		IV	b ∼ c	γ	出た様式ない。 岩片状コア主体。岩片も風化し中硬質 〜硬質。主亀裂は60°と15°傾斜。潜 在亀裂入る。 棒状〜短柱状コア主体。一部、岩片状コ	404 (8) 000	40	
91	167.48	91.75			В	II ₹ IV	b	β ? γ	アを呈す。 岩片は硬質である。 亀裂面は比較的シャープであり、酸化も わずかである。 GL-84.5m~85.15m間は石英脈、淡紫灰色 脈、緑灰色脈が不規則に褶曲し挟まれて	48 (107) C100) CM	02	
92	166.08			暗		II ~			いる。 緑色岩。石英等やや多く含み、粒子状。 棒状コア主体。硬質。コア肌ややザラ ザラ。 石英脈30~40°傾斜で入り、境界面付近 に亀裂が入りやすい。	(1) (100) CH		
94 95			緑色岩	灰~暗緑灰	В	I	b	β	下部付近では頁岩が混入しており暗灰 色を呈す。 <u>色製面の酸化はわずかである。</u> 緑色岩。石英等やや多く含み、粒子状。 棒状コア主体。硬質。コア肌ややツル ソル	33 1000 CM		清水 0-1
96						~ Ⅲ			下部層との境界はやや不明瞭であり、したいに漸移していく。 亀製面の傾斜は45~60°程度で酸化は わずかである。 緑色岩・頁岩混在。メランジュ状。や	43 100 CM		10
97 98			緑色岩 ・頁岩	暗灰 ~淡灰	В	II	b	β	や緑色岩優勢。 棒状〜短柱状コア主体。硬質。 一部、砂岩もブロック状〜脈状に取り込まれる。 頁岩優勢。メランジュ状を呈す。ブロック状〜脈状に砂岩含む。	731 000 CH	40	
99	159.11	100.12					ь	β	棒状〜短柱状コア主体。硬質。 上部層との境界は30°程度傾斜している。 免裂は20〜45°傾斜が主体である。 所々、縦亀裂が認めらるが、湾曲してい	[77] 1007 17 [10] CM	50	
101			頁岩	黒灰~	В	II	_		るものが多い。縦亀裂周辺は潜在亀裂が多くなる。	30 R100 CH CM CM		
-102 -103				灰		Ш	a ∼ b	α ? β	頁岩優勢。メランジュ状を呈す。ブロック状〜脈状に砂岩含む。 棒状〜短柱状コア主体、硬質。 亀裂は20~45 ⁸ 傾斜が主体である。亀 製面の酸化はほとんどない。	21 (100) CM (100) CM		
-104 -105	154.23	105.00								CH (15) (100)		

調 査 名 道災701-委-2号 災害復旧関連調査委託

総	掘	進	長	35.00m	度		0° F.₩	<u>ノ</u>	o°	向 西 東 勾 遺 180南 配 90°	√ 	機種	sia imi	エンジ	ンヤン	7−NI	F-8						ポ	ン:	プヤン	/7-N	FAD	-6						
標	標	深	柱	岩	色	硬	コ	割月	風変	写		ロア 打			子		()	試験	一位	室内			掘	進	状	ï	2	
				種			7	れ 目				-×- {大:		級	7 右			() 図	器	試験	掘	進	孔 径	コアチ		回送水	(水	: 水
尺	高	度	状	区				の				- • -			(n /												進	_	mm / 孔	ューブ	圧	転 圧数	量 (-
				<u> </u>			3	状			-	R		%]	月月		_										月	cm / 時	壁 保	/		pm MP	1	1/1
(m)	(m)	(m)		分	調	軟	状!	態 们	上質	事 1~5cm程度の砂礫主体。 比低け、終上年度的	0	[][50	100分	E	I 値	1	0	10	20	30	40) {	50 6	0	_	日	_	護	۱-	_	_ ~	- -	
1	164. 80 164. 50				茶灰	D	IV «	2 8		基質は、粘土質砂。 植物片を混入する。	H	Col	(100)		6	6	1. 15			+				_									I mulio
2	104. 30	1.00				D	IV (0		岩片~30cm位の棒状コアを主体とする。 メランジュ。				100)		6	50 4	2.00																1
3										GL-1.20~1.50m間は岩片状コア主体。 GL-1.60m付近及び3.15m付近は幅2cm位 で流入土砂を介在する。		29	(152)	100)*		6	50	3.00																1
E 4	161. 90	4. 10	0.0.0	頁岩	黒灰	С	ш	ς δ				7	(44)	100) CM									_					120			2		1 1	0 0
5			0.000							2~5cm位の礫主体。 一部、亜円礫を含む。 基質は、粘土混り砂。 植物片混入する。	0/10		(100)*		3 6	10	4. 25 5. 10			3:	\leq	_		5									l mili
6	160. 30 160. 00	5. 70 6. 00	0.000	砂礫	暗茶 灰 黒灰	D	V	c δ		含水量は少ない。 角礫〜短棒状コア主体。 (CL-5.7~6.0m間、粘土を挟む。	1			100) D D		6	20	6.00			1						<u>8</u> 23	120			1	120	1	25 26 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 7											13	[23		100)*			5																	1
										5~20cm程度の棒状コア主体。 頁岩メランジュ。 GL-6.50~6.60m間及、6.80m付近及び	_2:		(43)	100)*														1	100mm /ケー:	ノング				1
in the second										GL-8.60m付近の亀裂面礫化。	12/	(24		100)*													8_ 24	-						
	156. 80 156. 30	9. 70				D.	III o	c γ c δ		GL-9.25m付近、亀裂面粘土化。 GL-9.20~9.70m間は碟状コア。	12	[22]	1	007CL														80						1
10										亀裂面の傾斜角は不規則であるが、45~60°位であり、頁岩優勢部は鏡肌、砂岩優勢部は酸化色を認める。	16		(148)	100)*																				Imition
11											10	[10]		100)																				1
12											1	(15)		100)*	9/	00											8_ 26							I I
13										GL-13.65~14.00m間、砂岩を挟む。	15		[43]	100)*	¥.																			1
14											20	Ш	[39]	100)*							+										2		1	8 0
15										GL-15.20~16.00m間は砂岩。 亀裂面は酸化色認める。	15	Ш	[39]	100/	8/3 15. V	20					+													1
16	149. 85 149. 60 149. 40				黒灰	C D	III o	ς γ ς δ		GL-16.15~16.40m間は、亀裂面50~60° 位。	7/0			CM														75						1
17	148. 90	17. 10				D	IV 6	c δ	T	位。	610			100) CE							+									D C				
18	147 70						Ì	c δ		GL-16.60~17.10m間は、短棒状コアで縦 クラックを認め、亀裂面は粘土化し酸化著 しい。	940	-	H	100) CM						+	+									D B				and an
19	146. 55	19, 45			黒灰	D	v	dδ		GL-16.50~17.00mは縦亀裂あり。 GL-17.60~18.30m間は、10cm位の棒状= ア主体で亀裂多い。	90		(100)						-	+							70						hunhun
20										10~20cm位の棒状コアを主体とする。	17	1	ľ	100)	8/: 20: V	28 15					_						<u>8</u> 27							Jump'
21										頁岩メランジュ。				1667						+	+						27	1					1	
22										GL-21.90m及び23.60m付近の亀裂面は鏡 肌を呈し、砂礫状となる。		21		100)*							\perp													4
										葉理は、、概ね30~40° 位。 GL-21.10m付近及び27.60m付近、岩片状を呈する。				100)*							1													
24											21		(53	100)*							_													- minul
23											19			(73) 100)																				7 0-1
											18	\parallel	([82] 100)																				- milium
																													44	会法	×+L	2.	/ =	_

調 査 名 道災701-委-2号 災害復旧関連調査委託

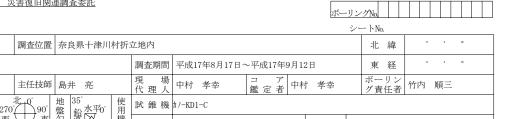
						~	<u>, </u>		L 100.11.100									ボー	-リン	/グNo.			
			<u>事</u>	業・工事名	<u> </u>	-													シ	→ トNo.			
ボ・	ーリ	ンク	名	BV-6					調査位置	奈」	良県十津川	村折	立地内							北緯	۰	,	"
発	注	機	関	五條土木	事務原	听工務三課							調査期間	平成17年8月	19日~	~平成17年9	9月8日			東 経	۰	,	"
調	查美	業 者	名	株式会社 0742-30-		ンテコ			主任技師	島	井 亮		現 場 代 理 人	中村 孝幸		コ ア 鑑 定 者	中村	孝幸		ボーリン グ責任者	川崎	栄司	
孔	П	標	高	GH= 166.00m	角	180° 上	方	기 270 <u>°</u>	90°		50. 水平0 鉛	使用機種	試 錐 機	├ホ-DO-C									
総	掘	進	長	35.00m	度	F 0° 0°	向	西 1	↓ 東 180南	盤勾配	置 文 90°	機種	エンジン	ヤンマーNF-8			7	ポンプ	ヤンマ・	-NFAD-6			

総	揺	進	長	85.00m	度	Ċ). ~	0°	向	180	南	配	90°		種	エンシ	/ン 	ヤンマー	NF-	8						ポン	′フ —	ヤン	7-N]	FAD-	-6							
標	標	深	柱	岩	色	硬:	コ割	風変			記				コア採	取率 岩	4	孔	() 試	験	原位	室			掘	進	状		況		7
				226		7	ħ							-	-×-	(%)	,	内水	_	()	図	原位置試験	内試	掘	掘進	孔	コア		回:	送 ji	送排	ŧ
尺	高	度	状	種		ľ	目								最大コー・一		Ž.	位 (m)										灰 (試験	進	速速度	径	チュー	圧	転り	水圧量	水量量	t
				区		Э	が状								R Q		Ξ	測定												月	cm/	孔壁	ーブノビ		数	_[7
(m)	(m)	(m)	図	分	調	軟壮		化質			事					[%] 	}	月	(値)		日	時	保護	ピット	MPaı	rpm M	Pa 3	分分	}
20														0 	50 8	[82]				0	10	2	20	30	40	50	60										Ŧ	
26														_	1-	(100)														8 <u>1</u>								
27															1	(106)*														29								1
27														١	8 [4]	(100)																						
F									地質は頁岩 片上ないし。 む。	メランジ φ1~3α	ジュで、ø emの層状	0.5~4cm に砂岩を	の岩合	_	27	(100)																						THE PERSON
29									GL-30.50∼	-30.75m	間は岩片	お状コアヨ	i:体、	1	7	(100)*																						
30														-	28	1723														8_ 30								1
31																(100)								+	-	_						86mm /ケー:	レング					to the same
32														Ī	1	(100)																						1
32														_1	74 140	(100)																						
33														_1	7	(100)																						Title
34														Ī		172																						1
35	131. 0	35. 00		頁岩	黒灰	вП	b	β						-		LICI	ł													O)II	72	66mm		2	330	2	15 (0
36														Ī		\prod																						1
														_																								-
37														_	+-	++																						1
38																																						1
39														_																								1
40														_		++																						1
41														Ī																								1
41																																						-
1														_	+-	+																						1
F 43														Ī		\blacksquare																					'	1
E 44																								+														-
45														_	+	+								+		_												-
46														_																								-
Landard .																Ш																						The state of
E 41															$+\Pi$																							and and
48																\parallel																						1
49														-	++	++								+	+												-	-
44 45 46 48 48 48 49 50 50 50 50 50 50 50 50 50 50 50 50 50															$\parallel \parallel \parallel$	\prod				-	-			-	\perp													1
Ē.,														-		++																						-
																																构	式会	≥ネ┼	1	ンラ	F-7	

株式会社 インテコ

調 査 名 道災701-委-2号 災害復旧関連調査委託

<u> </u>	,	名.	道災701-季	₹-2号	災害復旧関	車調査委託					ボー	リングNo.		
픨	¥・工事	名	_									シートNo.		
ボーリング名	BV-7				調査位置	奈良県十津川	村折	立地内				北緯	۰ ,	17
発 注 機 関	五條土オ	事務原	听工務三課					調査期間	平成17年8月17日~	~平成17年9月	12日	東 経	0 ,	17
調査業者名	株式会社 0742-30		ンテコ		主任技師	島井 亮		現 場代理人	中村 孝幸	コア単鑑定者	村 孝幸	ボーリン グ責任者	竹内 順三	
孔口標高	GH= 204.46m	角	180° 上	方 2	70° 90°	地 35	使用機種	試 錐 機	カノーKD1-C					
総掘進長		度	下 _{0°}	向	180南	盤 鉛 水平0°	機種	エンジン	ヤンマーNF13		ポンプ	中央L43		


孔	П	標		04. 46m	角	-	È E	\rightarrow	90°	方 270 90° 盤勾 配 90° 180°南 配 90°	水平	. 15 O° 月 枝	48	試 錐		\vdash								_		_									
総	掘	進	長	55.00m	度		下。 0°	ν —	0°	向 180南 配 90	ブ —	利	重	エンジ	ン	ヤンマ・	−NF1	3						ポ	ン	プロ	·央I	.43						_	
標	標	深	柱	岩	色	硬	コ	割月	虱変	記		コア	採耳	2率 岩	+	孔		()	試験	原位	室上			掘	進	状	is	2	
								ħ				-×-	_ (内水	_	() 図		内試	掘		孔	コア	給	可送		
尺	高	度	状	種			ア	目				最大				位 (m)										験	験	進	進速度	径	チュ	圧	水 圧		水量
	li-i		"	区			形	の						×		測													_	孔	ブ		数	ı	î
								状				R		[%]		定月												月	時	壁保	ビッ	MPar	pm MP	`/a/分	/ 分
(m)	(m)	(m)	図	分	調	軟	状	態化	匕質	事		0	50	100分	٠	B	値	0		0	20	30	40		50 6	60		. 日	_	護	١́٠	_		-	-
Ē			2000 0000 0000							2~5cm位の亜円~亜角礫を主体とする。 基質は粘土混り砂。	1	710	+-	#														8_							
1	203. 01	1.45	0.0.0	玉石混り砂 礫	茶灰				\perp	礫種は泥岩及び砂岩。		2) 2	1	#			29 30	1. 1	15		t	9						8 21	100			3	120	0 :	2 0
2	202. 46	2.00	00	岩塊	緑灰				\perp	岩種は緑色岩。GL-1.45~1.60m間は砂 礫~岩片状で、GL-1.60m以深は10~ 20cm程度の棒状コアである。		Д	Π.	CM	4						_								75						
Ē										GL-2.00~3.25m間、空洞。	0	(10)	+-	++																					1
F 3	201. 21		1,0	空洞				_	+	岩種は緑色岩からなる。		1	[45	Ш-							T														1
4			000							10~40cm程度の棒状コアからなり、コア肌 はなめらか。 GL-3.50m付近は亀裂多い。			Щ.	#				\vdash			+	_													1
Ė,	199. 71 199. 36		\cap	岩塊空洞	緑灰				+	岩級はCM~CH。 GL-4.75~5.10m間は空洞。		138	[38]	Ш−														8 22	180			10	150		1 H
Ē,	133. 00	0.10	* * *	DE 109			П		T	10~50cm程度の棒状コアを主体とする。 コア肌はなめらか。			5	[69]														22	140		.	19	100	1	
6	197. 96	6.50	****		EV.	B	П S Ш	b 5		GL-5.80~6.20m間、緑色岩からなり、不規 則に石英脈走る。		+++	3 15	91 CH				\vdash			+	+							140						1
Ē 7	197. 46		+ +		緑灰	1	IV	cδ	5	岩片〜短棒状コア主体。 亀裂多く不規則であり、酸化著しい。		Ш		CL				L																	1
E			****				Į.	c		新鮮。 10~40cm程度の棒状コアで、コア肌はな めらか。		++++	56	(95	0														130				150		1
8	186: 21	8: 35	****	緑色岩 空洞	灰		Ý	d f	3	GL-8.25m付近、石英多い。 GL-8.25~8.35m間は空洞。	1	23/12	21	CH							t														
E 9					灰	В	П 5 Ш	bβ	3	40cm程度の棒状コア主体。 新鮮でコア肌はなめらか。 GL-9.00~9.40m間は空洞。			#-	СН				\vdash			1	_													
Ė	195. 06 194. 76 194. 46	9.70	* * *	<u>空洞</u> 砂岩・頁岩 瓦層	灰灰	E	V III	d ε	3	碟状コア。	-	18 0	291	D CH		8/26 9.9 ⊈												8_ 23				10		1 15	5 03
10	194. 16	10. 30	****		黒灰	В	IV	c y	<u> </u>	10~40cm位の棒状コア主体とする。 新鮮で硬質。 GL-10.00~10.30m間は岩片状コア主体。		4	1	(62) CL		_												8 24	120		.	10	200	1 15	5 G
11	103 06	11. 40	****		EV.	В	п	a S		GE 10.00 10.00mmmag/14X=7 114%		Ш	#	СН				\vdash			+														
12	100.00		****							岩片~10cmの短棒状コア主体。 全体に亀裂多い。		1641112	61																160						1
Ē "			****				μ			エロー12.20~12.30m間、30° 位の亀裂認め、亀裂面は礫状化とする。		16	(37)	#															240				250		1
13	191. 36	13. 10	****		灰	С	IV	cδ	5	an on the bank helds have		33		CM [89]															210				200		1
14			****							15~30cmの棒状コアを主体とする。 全体に亀裂は少ないが、亀裂面は黒色に 変色を認める。		\prod	II.								╄														1
	189, 66 189, 46	14. 80	****		灰	В	п	b ß	3			4	+-	(84) CH															200						1
15	189. 16	15. 00	****		暗灰	C D	III IV	c δ	5	岩片状コアを主体とする。		16 [16]	#	CL															200						25 25 25 25 25 25 25 25 25 25 25 25 25 2
16			****							5~15cm程度の棒状コアを主体とする。 GL-15.5m付近は、傾斜45°位の亀裂多		- -	4	#				\vdash			\vdash		_												1
E .,			****							い。 GL-16.30m付近は、傾斜60°位の亀裂多		14 (2	51	+															200						1
17			****							V '0		1 2	1	\blacksquare																					
18	186. 46	18. 00 18. 40			灰灰		III IV	c γ b δ	5	GL-15.70~15.90m間、17.70m付近及び 18.00~18.40m間は、礫~岩片状コア主体 となる。		,,,	+	CM CL				\vdash			+							8_ 26	150			13	300	1 15	5 0
19	185. 46	19. 00			灰	С	ш	c y	,	全体の亀裂面は酸化色著しい。		7		CM																					1
E	184 56	19. 90	* * * *		EF.	D	v	c 8		岩片状コアを主体とする。GL-19.25~ 19.35m間は短棒状コアで、亀裂面の傾斜 は40°位。		(0)	+-	CL															80 60						1
E 20	101, 00	10.00	****				Ì			10~15cm位のコアを主体とするが、全体に 縦クラックを認め亀裂面は酸化色著しい。		20 120	0								t														1
21	183. 66	20. 80	****		灰	С	IV	c y	+	岩片〜短棒状コア主体。亀裂多く亀裂面 は礫状を呈する所多い。		-	#-	CM		8/28 21. 3: ♥	3	\vdash			╀	_	_						150						1
-	183. 06 182. 86	21.40	* * *	緑色岩 空洞	緑灰	C	IV	b d		GL-21.40~21.60m間は空洞。 5~20cm位の棒状コアを主体とする。 GL-22.20m以深は岩片状コア主体となる。		26 (2	6]	CL		÷												8 27				13	250	1 10	5 0
F 22	182. 26 181. 86	22. 20 22. 60	****	緑色岩	暗灰 暗灰	_	III IV	b γ c δ	6	泥質で電裂面は酸化色を認める。		16 [16]	1	CM CL																				T	
23	181. 46	23. 00	* * * *	22個	緑灰		V III	c δ	6	GL-22.60〜22.75m間は空洞。 角礫〜岩片状コア主体。			1	CL				\vdash																	1
24	180, 96 180, 71 180, 46	23. 75	****			D B	IV III	bγ	/	泥質。 10~25cm位の棒状コアを主体とする。 最大コアは45cm位。		T	45	C L CH				L				\perp							160			12	250		1
E	180. 06	24. 40				D B	IV II		3	版入コアは45cmf业。 GL-23.50~23.75m間、岩片状コア主体。		1114	4	60) CM	4																				
25			****					1 2				131/19	31	L				+			+	+				1			110			5	150		=
26	178. 81 178. 36	25. 65 26. 10					III IV	c γ c δ	5	GL-26.70m付近、緑色岩を介在する。 層理は45°位で層理面は角礫~礫状を呈			\prod	CL				-			-	\perp	_			4						T			1
		<u> 96. 79</u>	# #		灰緑灰	C	ш	c y	4	層理は45°位で層理面は角繰~繰状を呈する。		16 0	6	CM CM		8/29															IJ				
27			****		- DIA	Ĺ		- 1	T	GL-27.75m付近、緑色岩で層理面は25° 位で、鏡肌を呈する。		33	#	79)	1	8/29 27. 2 ▼		F			T	\dagger						<u>8</u> 28	240		ブル/ダ	10	300	1 1	5 0
28	176, 26				灰	C	III	c y	4	GL-28.20~28.45m間、不規則な亀裂多 く、岩片状コア主体となる。		 	#	CM				-			-	+				-					ダイヤ				5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
E.	176, 01	26. 45	****		歌形火	ח	1V	c lò	Ϊ	↑、石力 朳□ / 王体となる。		T3K [, 1 3]	∄	CL	1																			\perp	
																														4-4	- - - - - - -	. 41			

調 査 名 道災701-委-2号 災害復旧関連調査委託

事業・工事名

発 注 機 関 五條土木事務所工務三課

ボーリング名 BV-7

発注機 関 五條土木事務所工務三課		調査期間	1	以 17年8	月17日~			1		東			,	,,	
調 査 業 者 名 株式会社 インテコ 主任技師 島井 亮 0742-30-5655	:	現 場 代 理 人	中柞	才 孝幸	Ē	コニア鑑定者	中村	孝幸			ーリン 責任者	竹内	順三		
孔 口標 高 204.46m 角 180 方 北 35 地 35 北 40 松 48 松 40 木	更 一 一 一 一 一 一 一 一 一 一 一 一 一	試 錐 機	カノーK	D1-C											
A 日 標 高 204.46m	機種	エンジン	ヤンマー	NF13			7	ポンコ	プ中!	央L43					
200113															_
標標深柱岩色硬コ割風変 記	コア採		孔内	()試験	原位	室内	拼	進	状	況	
種とアロー	_×-	4374	水位) 図	位置試験	試頻		孔っア	"" "] 送 注 水 水	
尺高度状	最大コー・一	/ 女	(m)						~	\sim	油	エ チュ	圧転		
	R Q	D 🗵	測]		FL 7	数数	[]	
		[%]	定月								時	壁 /ビッ	MParp	m MPa 欠	分分
(m) (m) (m) 図 分 調 軟状態(化質 事	0 50	100 CM CL	日	値 (10	20 30	40	50 60)~	_	1 - 1	変 ト	-		4
[13/(13)	CL										,			1 1
29	30 (30)										130		20	10	1
- 30 ** * * * * * * * * * * * * * * * * *		CM							-						1
- 31 173.36 31.10 ** 緑色岩 灰 D IV c δ	39 14	CL													1
173.06 31.40 空洞 GL-31.10~31.40m間は空洞。	10	++									170		30		1
- 32 172.36 32.10 D W c δ 泥質・岩片状コア主体。 D L V C δ によっている。 には 洗ります。 には 表がとなり、 色製面 は 様状を足する。 短棒状ンア主体。	23 [39]	CL	8/30 32.70					+			60		18	0	1
171.71 32.75 * * * * * * * * * * * * * * * * * *		CM	₹		\perp			_		8.2	100		10 15	0 1	12 0
* * * * * * * * * * * * * * * * * * *		(87)													
I	43/	(59) CH									170		13 30	00	9. 5 9 5 7 7 8 9 7 9 7 9 9 7 9 9 9 9 9 9 9 9 9 9
- 35 10~25cm位の棒状コア主体。 (G-35,00m付近、岩片状コアからなる。 (G-35,50~35,60m間 元素質で象別を											110		10.00		
168.86 35.60		CH CH													1
* * * * * * * * * * * * * * * * * * *	13 (35	CM													1
37 167. 36 37. 10	14. [26]	СН									130		35	<u>io</u>	1
166.61 37.85		CL													1
10~40em位の棒状コア主体。	29 (4	1)													
- 39 **** *** *** *** *** *** *** *** ***	27	1591													1
- 40 GL-39.00m及び39.95m付近は岩片状コア 主体。			9/6							8.3	140		17 35	50 1	15 03
41 Le 2 Le 4 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		[91]	9/6 40.65 V								120		10 30		15
103.10年1.30 岩片〜短棒状コア主体。 不規則な亀勢多い。	19/ [29]	CH	0/3								75		7 12		5
42 162.46 42.00 膝色岩 灰 D W d b 所々、象製面に粘土へ離状を介在する。 162.01 42.45 既降質砂主体、一部粘土化認める。 17.12 1.41 の 最製面には出土へ離状を介在する。	20, [20]	D CL	9/3 42.20 V								100		7 12		10
43 C III C 7		CM									60		10 12	9	1
頁岩メランジュ。 15~40cmの棒状コア主体。 GL-42.450本42.80m間は10cm未満の短棒	34	[59]								9 2	130		13 25	0 1	15 0
44	38 (38	СН													1
45 159.26 45.20 C III C 7 (本製面は酸化色著しい。		CM			+			-			130				
10~65cm位の棒状コア主体。 - 46 - 不規則に石英を多量介在する。	21/	11 16													1
- 46 不規則に石英を多量介在する。 GL-45.30~45.50m間は緑色岩。	25	(66)									110				=
- 47 GL-47.10~47.40m間は砂質。		S (79)						+		0					1
156, 66 47, 80		СН						+		21/2	130		10 20	0 1	15 0
所々、岩組織を残す。		+++									60				
49 154, 96 49.50 E V d t GL-49.15m以深は、粘土化認める。	139	D D								96	- 60 - 50		3 12	0 0	2 0
50	23	(see)						+							=
頁岩メランジュ。 15~40cm位の棒状コア主体。								_		98	90		7 12		2 2
最大コアは60cm位。	15/	[62]									70/7·	シンク	10 20	0 2	15 15
52 比較的40°位の亀裂多い。 亀裂面は平坦、なめらかで、酸化はされて		1 (75)						+							1
- 53		1111			-	++		-							=
54	134/	[98]													almi
- 54 B J J J J J J J J J J J J J J J J J J	29	[64]								o	180				
_ 55 149.46 55.00 頁岩 黒灰 Ć II a a		СН						+		9.9	10086	+	13 30	0 2	15 2 2 15 15 15 15 15 15 15 15 15 15 15 15 15
56					\perp	1									1
	 	+++													1
271 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				-		1						44: -F.	<u> </u>	インテ	

(社)日本地すべり学会関西支部協賛会員名簿

(五十音・□数順)(2008年5月26日現在)36社

(会 社 名)	(電話番号)	(口数)
有限会社 太田ジオリサーチ	078-907-3120	. 3
中央復建コンサルタンツ株式会社技術開発室	06-6393-1123	. 3
日本工営株式会社大阪支店	06-6449-5800	. 3
株式会社アーバン・プロジェクト	088–655–5500	2
アジア航測株式会社西日本コンサルタント部	06-4801-2250	. 2
株式会社 荒谷建設コンサルタント山陰支社	. 0852–21–0401	. 2
株式会社 荒谷建設コンサルタント調査設計部	082-292-5481	. 2
株式会社宇部建設コンサルタント	. 0836–72–0392	. 2
宇部興産コンサルタント株式会社	0836-44-1170	. 2
株式会社エイトコンサルタント	0862–52–8917	. 2
応用地質株式会社高知支店	088-833-8811	. 2
株式会社オサシテクノス	. 088–850–0535	. 2
河井建設工業株式会社	. 0868–26–3787	. 2
川崎地質株式会社大阪支店	06-6649-2215	. 2
紀東工営株式会社	. 0737–25–0333	. 2
株式会社 クボタ	06-6648-2283	. 2
国際航業株式会社関西本社地質部	06-6487-1111	. 2
国土防災技術株式会社大阪支店	06-6136-9911	2
国土防災技術株式会社高知支店	088-825-1330	. 2
株式会社コスモ建設コンサルタント	0853-72-1171	. 2
株式会社四国トライ	. 088–883–5908	. 2

(社)日本地すべり学会関西支部協賛会員名簿(つづき)

(五十音・□数順)(2008年5月26日現在)36社

会	社	名)	(電話番号)	((口数)
株式:	会社	四国ボーリング工業	.0883-52-1621		. 2
島建	コンサ	サルタント株式会社	0853-53-3251		. 2
有限:	会社	ジオテック	0829-39-8316		. 2
住鉱:	コンサ	サルタント株式会社四国支店	0897-33-3123		. 2
株式:	会社	相愛	088-846-6700		. 2
株式:	会社会	ダイヤコンサルタント大阪支店	06-6339-9141		. 2
中央	開発材	朱式会社大阪事業部	06-6386-3691		. 2
株式	会社頁	東建ジオテック	089-945-3328		. 2
株式	会社力	ナイバ	. 0878–62–5121		. 2
ニタ	コンサ	サルタント株式会社	088-665-5550		. 2
株式	会社日	日本海技術コンサルタンツ	0852-66-3680		. 2
日本	工営材	朱式会社四国支店	087-836-0240		. 2
株式	会社區	廣瀬工業所	0886-23-1533		. 2
三菱	マテリ	リアルテクノ株式会社	079-679-4511		. 2
明治	コンサ	サルタント株式会社大阪支店	0727–51–1659		. 2